scholarly journals Altered effective connectivity in migraine patients during emotional stimuli: a multi-frequency magnetoencephalography study

2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Jing Ren ◽  
Qun Yao ◽  
Minjie Tian ◽  
Feng Li ◽  
Yueqiu Chen ◽  
...  

Abstract Background Migraine is a common and disabling primary headache, which is associated with a wide range of psychiatric comorbidities. However, the mechanisms of emotion processing in migraine are not fully understood yet. The present study aimed to investigate the neural network during neutral, positive, and negative emotional stimuli in the migraine patients. Methods A total of 24 migraine patients and 24 age- and sex-matching healthy controls were enrolled in this study. Neuromagnetic brain activity was recorded using a whole-head magnetoencephalography (MEG) system upon exposure to human facial expression stimuli. MEG data were analyzed in multi-frequency ranges from 1 to 100 Hz. Results The migraine patients exhibited a significant enhancement in the effective connectivity from the prefrontal lobe to the temporal cortex during the negative emotional stimuli in the gamma frequency (30–90 Hz). Graph theory analysis revealed that the migraine patients had an increased degree and clustering coefficient of connectivity in the delta frequency range (1–4 Hz) upon exposure to positive emotional stimuli and an increased degree of connectivity in the delta frequency range (1–4 Hz) upon exposure to negative emotional stimuli. Clinical correlation analysis showed that the history, attack frequency, duration, and neuropsychological scales of the migraine patients had a negative correlation with the network parameters in certain frequency ranges. Conclusions The results suggested that the individuals with migraine showed deviant effective connectivity in viewing the human facial expressions in multi-frequencies. The prefrontal-temporal pathway might be related to the altered negative emotional modulation in migraine. These findings suggested that migraine might be characterized by more universal altered cerebral processing of negative stimuli. Since the significant result in this study was frequency-specific, more independent replicative studies are needed to confirm these results, and to elucidate the neurocircuitry underlying the association between migraine and emotional conditions.

2021 ◽  
Author(s):  
Jing Ren ◽  
Qun Yao ◽  
Minjie Tian ◽  
Feng Li ◽  
Yueqiu Chen ◽  
...  

Abstract Background: Migraine is a common and disabling primary headache associated with a wide range of psychiatric comorbidities. However, the mechanisms of emotion processing in migraine are not fully understood yet. The present study was designed to investigate the neural network during neutral, positive,and negative emotional stimuli in migraine suffers.Methods: We enrolled 24 migraine suffers and 24 age- and sex-matched controls in this study. Neuromagnetic brain activity was recorded by using a whole-head magnetoencephalography (MEG) system towards human faces expression pictures. MEG data were analyzed in the multi-frequency band of 1–100 Hz.Results: Migraine patients exhibited significantly enhanced effective connectivity from the prefrontal lobe to the temporal cortex during negative emotional stimuli in the gamma band(30-90Hz). Graph theory analysis revealed that patients had (1) an increased degree and clustering coefficient of connectivity in the delta band(1-4Hz) during positive emotional stimuli; (2) an increased degree of connectivity in the delta band(1-4Hz) during negative emotional stimuli.Conclusion: The results suggested individuals with migraine showed deviant effective connectivity when viewing human facial expressions in multi-frequency. The prefrontal-temporal pathway might be related to the altered negative emotion modulation in migraine. These findings may contribute to understanding the mechanism of the comorbidity of depression and anxiety in migraine and provide references for the comprehensive therapeutic plan.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Andrés Canales-Johnson ◽  
Renzo C. Lanfranco ◽  
Juan Pablo Morales ◽  
David Martínez-Pernía ◽  
Joaquín Valdés ◽  
...  

AbstractMental imagery is the process through which we retrieve and recombine information from our memory to elicit the subjective impression of “seeing with the mind’s eye”. In the social domain, we imagine other individuals while recalling our encounters with them or modelling alternative social interactions in future. Many studies using imaging and neurophysiological techniques have shown several similarities in brain activity between visual imagery and visual perception, and have identified frontoparietal, occipital and temporal neural components of visual imagery. However, the neural connectivity between these regions during visual imagery of socially relevant stimuli has not been studied. Here we used electroencephalography to investigate neural connectivity and its dynamics between frontal, parietal, occipital and temporal electrodes during visual imagery of faces. We found that voluntary visual imagery of faces is associated with long-range phase synchronisation in the gamma frequency range between frontoparietal electrode pairs and between occipitoparietal electrode pairs. In contrast, no effect of imagery was observed in the connectivity between occipitotemporal electrode pairs. Gamma range synchronisation between occipitoparietal electrode pairs predicted subjective ratings of the contour definition of imagined faces. Furthermore, we found that visual imagery of faces is associated with an increase of short-range frontal synchronisation in the theta frequency range, which temporally preceded the long-range increase in the gamma synchronisation. We speculate that the local frontal synchrony in the theta frequency range might be associated with an effortful top-down mnemonic reactivation of faces. In contrast, the long-range connectivity in the gamma frequency range along the fronto-parieto-occipital axis might be related to the endogenous binding and subjective clarity of facial visual features.


2015 ◽  
Author(s):  
Jovana Belic ◽  
Per Halje ◽  
Ulrike Richter ◽  
Per Petersson ◽  
Jeanette Hellgren Kotaleski

We simultaneously recorded local field potentials in the primary motor cortex and sensorimotor striatum in awake, freely behaving, 6-OHDA lesioned hemi-parkinsonian rats in order to study the features directly related to pathological states such as parkinsonian state and levodopa-induced dyskinesia. We analysed the spectral characteristics of the obtained signals and observed that during dyskinesia the most prominent feature was a relative power increase in the high gamma frequency range at around 80 Hz, while for the parkinsonian state it was in the beta frequency range. Here we show that during both pathological states effective connectivity in terms of Granger causality is bidirectional with an accent on the striatal influence on the cortex. In the case of dyskinesia, we also found a high increase in effective connectivity at 80 Hz. In order to further understand the 80- Hz phenomenon, we performed cross-frequency analysis and observed characteristic patterns in the case of dyskinesia but not in the case of the parkinsonian state or the control state. We noted a large decrease in the modulation of the amplitude at 80 Hz by the phase of low frequency oscillations (up to ~10 Hz) across both structures in the case of dyskinesia. This may suggest a lack of coupling between the low frequency activity of the recorded network and the group of neurons active at ~80 Hz.


2018 ◽  
Vol 115 (51) ◽  
pp. E12034-E12042 ◽  
Author(s):  
Arseny A. Sokolov ◽  
Peter Zeidman ◽  
Michael Erb ◽  
Philippe Ryvlin ◽  
Karl J. Friston ◽  
...  

The perception of actions underwrites a wide range of socio-cognitive functions. Previous neuroimaging and lesion studies identified several components of the brain network for visual biological motion (BM) processing, but interactions among these components and their relationship to behavior remain little understood. Here, using a recently developed integrative analysis of structural and effective connectivity derived from high angular resolution diffusion imaging (HARDI) and functional magnetic resonance imaging (fMRI), we assess the cerebro-cerebellar network for processing of camouflaged point-light BM. Dynamic causal modeling (DCM) informed by probabilistic tractography indicates that the right superior temporal sulcus (STS) serves as an integrator within the temporal module. However, the STS does not appear to be a “gatekeeper” in the functional integration of the occipito-temporal and frontal regions: The fusiform gyrus (FFG) and middle temporal cortex (MTC) are also connected to the right inferior frontal gyrus (IFG) and insula, indicating multiple parallel pathways. BM-specific loops of effective connectivity are seen between the left lateral cerebellar lobule Crus I and right STS, as well as between the left Crus I and right insula. The prevalence of a structural pathway between the FFG and STS is associated with better BM detection. Moreover, a canonical variate analysis shows that the visual sensitivity to BM is best predicted by BM-specific effective connectivity from the FFG to STS and from the IFG, insula, and STS to the early visual cortex. Overall, the study characterizes the architecture of the cerebro-cerebellar network for BM processing and offers prospects for assessing the social brain.


2019 ◽  
Author(s):  
Andrés Canales-Johnson ◽  
Renzo C. Lanfranco ◽  
Juan Pablo Morales ◽  
David Martínez-Pernía ◽  
Joaquín Valdés ◽  
...  

ABSTRACTMental imagery is the process through which we retrieve and recombine information from our memory to elicit the subjective impression of “seeing with the mind’s eye”. In the social domain, we imagine other individuals while recalling our encounters with them or modelling alternative social interactions in future. Many studies using imaging and neurophysiological techniques have shown several similarities in brain activity between visual imagery and visual perception, and have identified frontoparietal, occipital and temporal neural components of visual imagery. However, the neural connectivity between these regions during visual imagery of socially relevant stimuli have not been studied. Here we used electroencephalography to investigate neural connectivity and its dynamics between frontal, parietal, occipital and temporal electrodes during visual imagery of faces. We found that voluntary visual imagery of faces is associated with long-range phase synchronisation in the gamma frequency range between frontoparietal electrode pairs and between occipitoparietal electrode pairs. In contrast, no effect of imagery was observed in the connectivity between occipitotemporal electrode pairs. Gamma range synchronisation between occipitoparietal electrode pairs predicted subjective ratings of the contour definition of imagined faces. Furthermore, we found that visual imagery of faces is associated with an increase of short-range frontal synchronisation in the theta frequency range, which temporally preceded the long-range increase in the gamma synchronisation. We speculate that the local frontal synchrony in the theta frequency range might be associated with an effortful top-down mnemonic reactivation of faces. In contrast, the long-range connectivity in the gamma frequency range along the fronto-parieto-occipital axis might be related to the endogenous binding and subjective clarity of facial visual features.


2008 ◽  
Vol 20 (11) ◽  
pp. 1980-1992 ◽  
Author(s):  
James B. Rowe ◽  
Doris Eckstein ◽  
Todd Braver ◽  
Adrian M. Owen

The prospect of reward changes how we think and behave. We investigated how this occurs in the brain using a novel continuous performance task in which fluctuating reward expectations biased cognitive processes between competing spatial and verbal tasks. Critically, effects of reward expectancy could be distinguished from induced changes in task-related networks. Behavioral data confirm specific bias toward a reward-relevant modality. Increased reward expectation improves reaction time and accuracy in the relevant dimension while reducing sensitivity to modulations of stimuli characteristics in the irrelevant dimension. Analysis of functional magnetic resonance imaging data shows that the proximity to reward over successive trials is associated with increased activity of the medial frontal cortex regardless of the modality. However, there are modality-specific changes in brain activity in the lateral frontal, parietal, and temporal cortex. Analysis of effective connectivity suggests that reward expectancy enhances coupling in both early visual pathways and within the prefrontal cortex. These distributed changes in task-related cortical networks arise from subjects' representations of future events and likelihood of reward.


Author(s):  
Mohammad Ali Taheri ◽  
Fatemeh Modarresi-Asem ◽  
Noushin Nabavi ◽  
Parisa Maftoun ◽  
Farid Semsarha

The study of the brain networks using analysis of electroencephalography (EEG) data based on statistical dependencies (functional connectivity) and mathematical graph theory concepts is common in neuroscience and cognitive sciences for examinations of patient and healthy individuals. The Consciousness Fields according to Taheri theory and applications in the optimization of system under study have been investigated in various studies. In this study, we examine the results of working with Faradarmani Consciousness Field (FCF) in the brain of Faradarmangars. Faradarmangars are one of the necessary components in mind mediation of the function of Faradarmani Consciousness Fields according to Taheri. For this purpose, the functional and effective connectivity and the corresponding brain graphs of EEG from the brain of Faradarmangars is compared with that of non Faradarmangar groups during FCF connection. According to the results of the present study, the brain of the Faradarmangars shows significant decreased activity in delta (BA8), beta2 (BA4/6/8/9/10/11/32/44/47) and beta3 (in 34 of 52 BA) frequency bands mainly in frontal lobe and after that in parietal and temporal lobes in the comparison with the non Faradarmangars. Moreover, the functional and effective connectivity analysis in the frontal network shows dominant multiple decreased connectivity mainly in the case of beta3 frequency band in all parts of the frontal network. On the other hand, the graph theory analysis of the Faradarmangar brain shows an increase in the activity of the O2-T5-F4-F3-FP2-F8 areas and significant decrease in the characteristic path length and increases in global efficiency, clustering coefficient and transitivity. In conclusion, the unique higher graph function efficiency and the reduction in the brain activity and connectivity during the Faradarmani Consciousness Field mind mediation, shown the passive and detector like function of the human brain in this task.


2009 ◽  
Vol 23 (4) ◽  
pp. 191-198 ◽  
Author(s):  
Suzannah K. Helps ◽  
Samantha J. Broyd ◽  
Christopher J. James ◽  
Anke Karl ◽  
Edmund J. S. Sonuga-Barke

Background: The default mode interference hypothesis ( Sonuga-Barke & Castellanos, 2007 ) predicts (1) the attenuation of very low frequency oscillations (VLFO; e.g., .05 Hz) in brain activity within the default mode network during the transition from rest to task, and (2) that failures to attenuate in this way will lead to an increased likelihood of periodic attention lapses that are synchronized to the VLFO pattern. Here, we tested these predictions using DC-EEG recordings within and outside of a previously identified network of electrode locations hypothesized to reflect DMN activity (i.e., S3 network; Helps et al., 2008 ). Method: 24 young adults (mean age 22.3 years; 8 male), sampled to include a wide range of ADHD symptoms, took part in a study of rest to task transitions. Two conditions were compared: 5 min of rest (eyes open) and a 10-min simple 2-choice RT task with a relatively high sampling rate (ISI 1 s). DC-EEG was recorded during both conditions, and the low-frequency spectrum was decomposed and measures of the power within specific bands extracted. Results: Shift from rest to task led to an attenuation of VLFO activity within the S3 network which was inversely associated with ADHD symptoms. RT during task also showed a VLFO signature. During task there was a small but significant degree of synchronization between EEG and RT in the VLFO band. Attenuators showed a lower degree of synchrony than nonattenuators. Discussion: The results provide some initial EEG-based support for the default mode interference hypothesis and suggest that failure to attenuate VLFO in the S3 network is associated with higher synchrony between low-frequency brain activity and RT fluctuations during a simple RT task. Although significant, the effects were small and future research should employ tasks with a higher sampling rate to increase the possibility of extracting robust and stable signals.


2000 ◽  
Vol 12 (4) ◽  
pp. 622-634 ◽  
Author(s):  
Matti Laine ◽  
Riitta Salmelin ◽  
Päivi Helenius ◽  
Reijo Marttila

Magnetoencephalographic (MEG) changes in cortical activity were studied in a chronic Finnish-speaking deep dyslexic patient during single-word and sentence reading. It has been hypothesized that in deep dyslexia, written word recognition and its lexical-semantic analysis are subserved by the intact right hemisphere. However, in our patient, as well as in most nonimpaired readers, lexical-semantic processing as measured by sentence-final semantic-incongruency detection was related to the left superior-temporal cortex activation. Activations around this same cortical area could be identified in single-word reading as well. Another factor relevant to deep dyslexic reading, the morphological complexity of the presented words, was also studied. The effect of morphology was observed only during the preparation for oral output. By performing repeated recordings 1 year apart, we were able to document significant variability in both the spontaneous activity and the evoked responses in the lesioned left hemisphere even though at the behavioural level, the patient's performance was stable. The observed variability emphasizes the importance of estimating consistency of brain activity both within and between measurements in brain-damaged individuals.


Sign in / Sign up

Export Citation Format

Share Document