scholarly journals Down-regulation of the brain-specific cell-adhesion molecule contactin-3 in tuberous sclerosis complex during the early postnatal period

2022 ◽  
Vol 14 (1) ◽  
Author(s):  
Anatoly Korotkov ◽  
Mark J. Luinenburg ◽  
Alessia Romagnolo ◽  
Till S. Zimmer ◽  
Jackelien van Scheppingen ◽  
...  

Abstract Background The genetic disorder tuberous sclerosis complex (TSC) is frequently accompanied by the development of neuropsychiatric disorders, including autism spectrum disorder and intellectual disability, with varying degrees of impairment. These co-morbidities in TSC have been linked to the structural brain abnormalities, such as cortical tubers, and recurrent epileptic seizures (in 70–80% cases). Previous transcriptomic analysis of cortical tubers revealed dysregulation of genes involved in cell adhesion in the brain, which may be associated with the neurodevelopmental deficits in TSC. In this study we aimed to investigate the expression of one of these genes – cell-adhesion molecule contactin-3. Methods Reverse transcription quantitative polymerase chain reaction for the contactin-3 gene (CNTN3) was performed in resected cortical tubers from TSC patients with drug-resistant epilepsy (n = 35, age range: 1–48 years) and compared to autopsy-derived cortical control tissue (n = 27, age range: 0–44 years), as well as by western blot analysis of contactin-3 (n = 7 vs n = 7, age range: 0–3 years for both TSC and controls) and immunohistochemistry (n = 5 TSC vs n = 4 controls). The expression of contactin-3 was further analyzed in fetal and postnatal control tissue by western blotting and in-situ hybridization, as well as in the SH-SY5Y neuroblastoma cell line differentiation model in vitro. Results CNTN3 gene expression was lower in cortical tubers from patients across a wide range of ages (fold change = − 0.5, p < 0.001) as compared to controls. Contactin-3 protein expression was lower in the age range of 0–3 years old (fold change = − 3.8, p < 0.001) as compared to the age-matched controls. In control brain tissue, contactin-3 gene and protein expression could be detected during fetal development, peaked around birth and during infancy and declined in the adult brain. CNTN3 expression was induced in the differentiated SH-SY5Y neuroblastoma cells in vitro (fold change = 6.2, p < 0.01). Conclusions Our data show a lower expression of contactin-3 in cortical tubers of TSC patients during early postnatal period as compared to controls, which may affect normal brain development and might contribute to neuropsychiatric co-morbidities observed in patients with TSC.

2020 ◽  
Vol 295 (49) ◽  
pp. 16691-16699
Author(s):  
Razie Amraei ◽  
Tooba Alwani ◽  
Rachel Xi-Yeen Ho ◽  
Zahra Aryan ◽  
Shawn Wang ◽  
...  

Autophagy plays critical roles in the maintenance of endothelial cells in response to cellular stress caused by blood flow. There is growing evidence that both cell adhesion and cell detachment can modulate autophagy, but the mechanisms responsible for this regulation remain unclear. Immunoglobulin and proline-rich receptor-1 (IGPR-1) is a cell adhesion molecule that regulates angiogenesis and endothelial barrier function. In this study, using various biochemical and cellular assays, we demonstrate that IGPR-1 is activated by autophagy-inducing stimuli, such as amino acid starvation, nutrient deprivation, rapamycin, and lipopolysaccharide. Manipulating the IκB kinase β activity coupled with in vivo and in vitro kinase assays demonstrated that IκB kinase β is a key serine/threonine kinase activated by autophagy stimuli and that it catalyzes phosphorylation of IGPR-1 at Ser220. The subsequent activation of IGPR-1, in turn, stimulates phosphorylation of AMP-activated protein kinase, which leads to phosphorylation of the major pro-autophagy proteins ULK1 and Beclin-1 (BECN1), increased LC3-II levels, and accumulation of LC3 punctum. Thus, our data demonstrate that IGPR-1 is activated by autophagy-inducing stimuli and in response regulates autophagy, connecting cell adhesion to autophagy. These findings may have important significance for autophagy-driven pathologies such cardiovascular diseases and cancer and suggest that IGPR-1 may serve as a promising therapeutic target.


2001 ◽  
Vol 12 (9) ◽  
pp. 2699-2710 ◽  
Author(s):  
Evelyn B. Voura ◽  
Ravi A. Ramjeesingh ◽  
Anthony M.P. Montgomery ◽  
Chi-Hung Siu

Tumor metastasis involves many stage-specific adhesive interactions. The expression of several cell adhesion molecules, notably the integrin αvβ3, has been associated with the metastatic potential of tumor cells. In this study, we used a novel in vitro assay to examine the role of αvβ3 in the transmigration of melanoma cells through a monolayer of human lung microvascular endothelial cells. Confocal microscopy revealed the presence of the integrin αvβ3 on melanoma membrane protrusions and pseudopods penetrating the endothelial junction. αvβ3 was also enriched in heterotypic contacts between endothelial cells and melanoma cells. Transendothelial migration of melanoma cells was inhibited by either a cyclic Arg-Gly-Asp peptide or the anti-αvβ3monoclonal antibody LM609. Although both platelet endothelial cell adhesion molecule-1 and L1 are known to bind integrin αvβ3, only L1 serves as a potential ligand for αvβ3 during melanoma transendothelial migration. Also, polyclonal antibodies against L1 partially inhibited the transendothelial migration of melanoma cells. However, addition of both L1 and αvβ3 antibodies did not show additive effects, suggesting that they are components of the same adhesion system. Together, the data suggest that interactions between the integrin αvβ3 on melanoma cells and L1 on endothelial cells play an important role in the transendothelial migration of melanoma cells.


Sign in / Sign up

Export Citation Format

Share Document