scholarly journals Baicalin-loaded folic acid-modified albumin nanoparticles (FA-BSANPs/BA) induce autophagy in MCF-7 cells via ROS-mediated p38 MAPK and Akt/mTOR pathway

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Fengjie Liu ◽  
Meng Lan ◽  
Baoqi Ren ◽  
Lihong Li ◽  
Tengteng Zou ◽  
...  

Abstract Background Breast cancer is the most frequently occurring cancer among women. Baicalin has been shown to inhibit breast cancer proliferation, but poor aqueous solubility and unknown mechanism of action limit its application. This study aimed to investigate the antiproliferative effects of baicalin-loaded folic acid-modified albumin nanoparticles (FA-BSANPs/BA) in breast cancer MCF-7 cells and its relationship with autophagy and ROS-mediated p38 MAPK and Akt/mTOR signaling pathways. Cell viability was detected by MTT assay. Flow cytometry and fluorescence microscopy were used to detect cell cycle, apoptosis and autophagy. Western blot was used to detect protein expression. Results Compared with the control and free baicalin groups, FA-BSANPs/BA inhibited viability of MCF-7 cells and increased cells in S phase, apoptotic bodies, pro-apoptotic proteins, autophagy markers and autophagosomes. These effects could be reversed when combined with the autophagy inhibitor 3-methyladenine. FA-BSANPs/BA increased the levels of phosphorylated p38 MAPK, inhibited the levels of phosphorylated Akt and mTOR, and increased the level of ROS in MCF-7 cells. The effects of FA-BSANPs/BA could be reversed or enhanced using inhibitors of Akt, mTOR, p38 MAPK and ROS scavengers. Conclusions Encapsulation in folate albumin nanoparticles improved the antiproliferative activity of baicalin. FA-BSANPs/BA induced autophagy and apoptosis via ROS-mediated p38 MAPK and Akt/mTOR signaling pathways in human breast cancer cells.

2021 ◽  
Vol 11 ◽  
Author(s):  
Muhammad Azhar Nisar ◽  
Qin Zheng ◽  
Muhammad Zubair Saleem ◽  
Bulbul Ahmmed ◽  
Muhammad Noman Ramzan ◽  
...  

Vasculogenic mimicry (VM), a micro vessel-like structure formed by the cancer cells, plays a pivotal role in cancer malignancy and progression. Interleukin-1 beta (IL-1β) is an active pro-inflammatory cytokine and elevated in many tumor types, including breast cancer. However, the effect of IL-1β on the VM of breast cancer has not been clearly elucidated. In this study, breast cancer cells (MCF-7 and MDA-MB-231) were used to study the effect of IL-1β on the changes that can promote VM. The evidence for VM stimulated by IL-1β was acquired by analyzing the expression of VM-associated biomarkers (VE-cadherin, VEGFR-1, MMP-9, MMP-2, c-Fos, and c-Jun) via western blot, immunofluorescent staining, and Immunohistochemistry (IHC). Additionally, morphological evidence was collected via Matrigel-based cord formation assay under normoxic/hypoxic conditions and microvessel examination through Hematoxylin and Eosin staining (H&E). Furthermore, the STRING and Gene Ontology database was also used to analyze the VM-associated interacting molecules stimulated by IL-β. The results showed that the expression of VM biomarkers was increased in both MCF-7 and MDA-MB-231 cells after IL-1β treatment. The increase in VM response was observed in IL-1β treated cells under both normoxia and hypoxia. IL-1β also increased the activation of transcription factor AP-1 complex (c-Fos/c-Jun). The bioinformatics data indicated that p38/MAPK and PI3K/Akt signaling pathways were involved in the IL-1β stimulation. It was further confirmed by the downregulated expression of VM biomarkers and reduced formation of the intersections upon the addition of the signaling pathway inhibitors. The study suggests that IL-1β stimulates the VM and its associated events in breast cancer cells via p38/MAPK and PI3K/Akt signaling pathways. Aiming the VM-associated molecular targets promoted by IL-1β may offer a novel anti-angiogenic therapeutic strategy to control the aggressiveness of breast cancer cells.


Author(s):  
Hebatallah G. Hafez ◽  
Rafat M. Mohareb ◽  
Sohair M. Salem ◽  
Azza A. Matloub ◽  
Emad F. Eskander ◽  
...  

Objective: This study aimed to appraise the activity of Pterocladia capillacea and Corallina officinalis polysaccharides against breast cancer stem cells (BCSCs). P. capillacea and C. officinalis polysaccharides were characterized to be sulfated polysaccharide-protein complexes. Methods: Cytotoxicity of the polysaccharides against MDA-MB-231 and MCF-7 cell lines along with their impact on CD44+/CD24− and aldehyde dehydrogenase 1(ALDH1) positive BCSC population were determined. Their effect on gene expression of CSC markers, Wnt/β-catenin and Notch signaling pathways was evaluated. Results: P. capillacea and C. officinalis polysaccharides inhibited the growth of breast cancer cells and reduced BCSC subpopulation. P. capillacea polysaccharides significantly down-regulated OCT4, SOX2, ALDH1A3 and vimentin in MDA-MB-231 as well as in MCF-7 cells except for vimentin that was up-regulated in MCF-7 cells. C. officinalis polysaccharides exhibited similar effects except for OCT4 that was up-regulated in MDA-MB-231 cells. Significant suppression of Cyclin D1 gene expression was noted in MDA-MB-231 and MCF-7 cells treated with P. capillacea or C. officinalis polysaccharides. β-catenin and c-Myc genes were significantly down-regulated in MDA-MB-231 cells treated with C. officinalis and P. capillacea polysaccharides, respectively, while being up-regulated in MCF-7 cells treated with either of them. Additionally, P. capillacea and C. officinalis polysaccharides significantly down-regulated Hes1 gene in MCF-7 cells despite increasing Notch1 gene expression level. However, significant down-regulation of Notch1 gene was observed in MDA-MB-231 cells treated with P. capillacea polysaccharides. Conclusion: Collectively, this study provides evidence for the effectiveness of P. capillacea and C. officinalis polysaccharides in targeting BCSCs through interfering with substantial signaling pathways contributing to their functionality.


Author(s):  
Xiaowen Chen ◽  
Jianli Chen

This study intended to investigate the effects of miR-3188 on breast cancer and to reveal the possible molecular mechanisms. miR-3188 was upregulated and TUSC5 was downregulated in breast cancer tissues and MCF-7 cells compared to normal tissue and MCF-10 cells. After MCF-7 cells were transfected with miR-3188 inhibitor, cell proliferation and migration were inhibited, whereas apoptosis was promoted. Luciferase reporter assay suggested that TUSC5 was a target gene of miR-3188. In addition, miR-3188 overexpression increased the p-p38 expression, while miR-3188 suppression decreased the p-p38 expression significantly. miR-3188 regulated breast cancer progression via the p38 MAPK signaling pathway. In conclusion, miR-3188 affects breast cancer cell proliferation, apoptosis, and migration by targeting TUSC5 and activating the p38 MAPK signaling pathway. miR-3188 may serve as a potential therapeutic agent for the treatment of breast cancer.


Phytomedicine ◽  
2018 ◽  
Vol 50 ◽  
pp. 35-42 ◽  
Author(s):  
Soo-Jin Kim ◽  
Thu-Huyen Pham ◽  
Yesol Bak ◽  
Hyung-Won Ryu ◽  
Sei-Ryang Oh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document