scholarly journals Genetic basis of orange spot formation in the guppy (Poecilia reticulata)

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Mayuko Kawamoto ◽  
Yuu Ishii ◽  
Masakado Kawata

Abstract Background To understand the evolutionary significance of female mate choice for colorful male ornamentation, the underlying regulatory mechanisms of such ornamentation must be understood for examining how the ornaments are associated with “male qualities” that increase the fitness or sexual attractiveness of offspring. In the guppy (Poecilia reticulata), an established model system for research on sexual selection, females prefer males possessing larger and more highly saturated orange spots as potential mates. Although previous studies have identified some chromosome regions and genes associated with orange spot formation, the regulation and involvement of these genetic elements in orange spot formation have not been elucidated. In this study, the expression patterns of genes specific to orange spots and certain color developmental stages were investigated using RNA-seq to reveal the genetic basis of orange spot formation. Results Comparing the gene expression levels of male guppy skin with orange spots (orange skin) with those without any color spots (dull skin) from the same individuals identified 1102 differentially expressed genes (DEGs), including 630 upregulated genes and 472 downregulated genes in the orange skin. Additionally, the gene expression levels of the whole trunk skin were compared among the three developmental stages and 2247 genes were identified as DEGs according to color development. These analyses indicated that secondary differentiation of xanthophores may affect orange spot formation. Conclusions The results suggested that orange spots might be formed by secondary differentiation, rather than de novo generation, of xanthophores, which is induced by Csf1 and thyroid hormone signaling pathways. Furthermore, we suggested candidate genes associated with the areas and saturation levels of orange spots, which are both believed to be important for female mate choice and independently regulated. This study provides insights into the genetic and cellular regulatory mechanisms underlying orange spot formation, which would help to elucidate how these processes are evolutionarily maintained as ornamental traits relevant to sexual selection.

Genes ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 594 ◽  
Author(s):  
Tarun Hotchandani ◽  
Justine de Villers ◽  
Isabel Desgagné-Penix

Amaryllidaceae alkaloids (AAs) have multiple biological effects, which are of interest to the pharmaceutical industry. To unleash the potential of Amaryllidaceae plants as pharmaceutical crops and as sources of AAs, a thorough understanding of the AA biosynthetic pathway is needed. However, only few enzymes in the pathway are known. Here, we report the transcriptome of AA-producing paperwhites (Narcissus papyraceus Ker Gawl). We present a list of 21 genes putatively encoding enzymes involved in AA biosynthesis. Next, a cDNA library was created from 24 different samples of different parts at various developmental stages of N. papyraceus. The expression of AA biosynthetic genes was analyzed in each sample using RT-qPCR. In addition, the alkaloid content of each sample was analyzed by HPLC. Leaves and flowers were found to have the highest abundance of heterocyclic compounds, whereas the bulb, the lowest. Lycorine was also the predominant AA. The gene expression results were compared with the heterocyclic compound profiles for each sample. In some samples, a positive correlation was observed between the gene expression levels and the amount of compounds accumulated. However, due to a probable transport of enzymes and alkaloids in the plant, a negative correlation was also observed, particularly at stage 2.


2017 ◽  
Author(s):  
Lauren E. Blake ◽  
Samantha M. Thomas ◽  
John D. Blischak ◽  
Chiaowen Joyce Hsiao ◽  
Claudia Chavarria ◽  
...  

AbstractThere is substantial interest in the evolutionary forces that shaped the regulatory framework that is established in early human development. Progress in this area has been slow because it is difficult to obtain relevant biological samples. Inducible pluripotent stem cells (iPSCs) provide the ability to establish in vitro models of early human and non-human primate developmental stages. Using matched iPSC panels from humans and chimpanzees, we comparatively characterized gene regulatory changes through a four-day timecourse differentiation of iPSCs (day 0) into primary streak (day 1), endoderm progenitors (day 2), and definitive endoderm (day 3). As might be expected, we found that differentiation stage is the major driver of variation in gene expression levels, followed by species. We identified thousands of differentially expressed genes between humans and chimpanzees in each differentiation stage. Yet, when we considered gene-specific dynamic regulatory trajectories throughout the timecourse, we found that 75‥ of genes, including nearly all known endoderm developmental markers, have similar trajectories in the two species. Interestingly, we observed a marked reduction of both intra-and inter-species variation in gene expression levels in primitive streak samples compared to the iPSCs, with a recovery of regulatory variation in endoderm progenitors. The reduction of variation in gene expression levels at a specific developmental stage, paired with overall high degree of conservation of temporal gene regulation, is consistent with the dynamics of developmental canalization. Overall, we conclude that endoderm development in iPSC-based models are highly conserved and canalized between humans and our closest evolutionary relative.


Animals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 182 ◽  
Author(s):  
Xuelan Zhou ◽  
Xiaoyun Wu ◽  
Min Chu ◽  
Chunnian Liang ◽  
Xuezhi Ding ◽  
...  

Testis has an important function in male reproduction. Its development is regulated by a large number of genes. The real-time reserve transcriptase-quantitative polymerase chain reaction (RT-qPCR) is a useful tool to evaluate the gene expression levels. However, unsuitable reference genes (RGs) can cause the misinterpretation of gene expression levels. Unfortunately, the ideal RGs for yak testis development are yet to be studied. In this study, 13 commonly used RGs were selected to identify the most stable RGs in yak testis at four different developmental stages, including two immature stages (6 months and 18 months) and two mature stages (30 months and 6 years). This study used GeNorm, NormFinder, BestKeeper, ∆Ct, and RefFinder programs to evaluate the stability of 13 candidate genes. The results of RefFinder showed that the stabilities of TATA box-binding protein (TBP) and ubiquitously expressed transcript protein (UXT) were ranked the top two across all developmental stages. TBP and hydroxymethylbilane synthase (HMBS) were stably expressed in immature stages, while mitochondrial ribosomal protein L39 (MRPL39) and TBP had higher stability than other candidate genes in mature stages. This study provided valuable information for gene expression studies to assist further investigation on the molecular mechanisms in underlying yak testis development.


2015 ◽  
Vol 61 (6) ◽  
pp. 1015-1035 ◽  
Author(s):  
Kasey D. Fowler-Finn ◽  
Laura Sullivan-Beckers ◽  
Amy M. Runck ◽  
Eileen A. Hebets

Abstract Genetic, life history, and environmental factors dictate patterns of variation in sexual traits within and across populations, and thus the action and outcome of sexual selection. This study explores patterns of inheritance, diet, age, and mate-choice copying on the expression of male sexual signals and associated female mate choice in a phenotypically diverse group of Schizocosa wolf spiders. Focal spiders exhibit one of two male phenotypes: ‘ornamented’ males possess large black brushes on their forelegs, and ‘non-ornamented’ males possess no brushes. Using a quantitative genetics breeding design in a mixed population of ornamented/non-ornamented males, we found a strong genetic basis to male phenotype and female choice. We also found that some ornamented males produced some sons with large brushes and others with barely visible brushes. Results of diet manipulations and behavioral mating trials showed no influence of diet on male phenotype or female mate choice. Age post maturation, however, influenced mate choice, with younger females being more likely to mate with ornamented males. A mate-choice copying experiment found that, following observations of another female’s mate choice/copulation, virgin mature females tended to match the mate choice (ornamented vs. non-ornamented males) of the females they observed. Finally, analyses of genetic variation across phenotypically pure (only one male phenotype present) vs. mixed (both phenotypes present) populations revealed genetic distinction between phenotypes in phenotypically-pure populations, but no distinctionin phenotypically-mixed populations. The difference in patterns of genetic differentiation and mating across geographic locations suggests a complex network of factors contributing to the outcome of sexual selection.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Tom G. Richardson ◽  
Gibran Hemani ◽  
Tom R. Gaunt ◽  
Caroline L. Relton ◽  
George Davey Smith

AbstractDeveloping insight into tissue-specific transcriptional mechanisms can help improve our understanding of how genetic variants exert their effects on complex traits and disease. In this study, we apply the principles of Mendelian randomization to systematically evaluate transcriptome-wide associations between gene expression (across 48 different tissue types) and 395 complex traits. Our findings indicate that variants which influence gene expression levels in multiple tissues are more likely to influence multiple complex traits. Moreover, detailed investigations of our results highlight tissue-specific associations, drug validation opportunities, insight into the likely causal pathways for trait-associated variants and also implicate putative associations at loci yet to be implicated in disease susceptibility. Similar evaluations can be conducted at http://mrcieu.mrsoftware.org/Tissue_MR_atlas/.


Nature ◽  
2017 ◽  
Vol 550 (7675) ◽  
pp. 204-213 ◽  
Author(s):  

Abstract Characterization of the molecular function of the human genome and its variation across individuals is essential for identifying the cellular mechanisms that underlie human genetic traits and diseases. The Genotype-Tissue Expression (GTEx) project aims to characterize variation in gene expression levels across individuals and diverse tissues of the human body, many of which are not easily accessible. Here we describe genetic effects on gene expression levels across 44 human tissues. We find that local genetic variation affects gene expression levels for the majority of genes, and we further identify inter-chromosomal genetic effects for 93 genes and 112 loci. On the basis of the identified genetic effects, we characterize patterns of tissue specificity, compare local and distal effects, and evaluate the functional properties of the genetic effects. We also demonstrate that multi-tissue, multi-individual data can be used to identify genes and pathways affected by human disease-associated variation, enabling a mechanistic interpretation of gene regulation and the genetic basis of disease.


2019 ◽  
Vol 26 (31) ◽  
pp. 5849-5861 ◽  
Author(s):  
Pan Jiang ◽  
Feng Yan

tiRNAs & tRFs are a class of small molecular noncoding tRNA derived from precise processing of mature or precursor tRNAs. Most tiRNAs & tRFs described originate from nucleus-encoded tRNAs, and only a few tiRNAs and tRFs have been reported. They have been suggested to play important roles in inhibiting protein synthesis, regulating gene expression, priming viral reverse transcriptases, and the modulation of DNA damage responses. However, the regulatory mechanisms and potential function of tiRNAs & tRFs remain poorly understood. This review aims to describe tiRNAs & tRFs, including their structure, biological functions and subcellular localization. The regulatory roles of tiRNAs & tRFs in translation, neurodegeneration, metabolic diseases, viral infections, and carcinogenesis are also discussed in detail. Finally, the potential applications of these noncoding tRNAs as biomarkers and gene regulators in different diseases is also highlighted.


2021 ◽  
Author(s):  
Pavel V. Mazin ◽  
Philipp Khaitovich ◽  
Margarida Cardoso-Moreira ◽  
Henrik Kaessmann

AbstractAlternative splicing (AS) is pervasive in mammalian genomes, yet cross-species comparisons have been largely restricted to adult tissues and the functionality of most AS events remains unclear. We assessed AS patterns across pre- and postnatal development of seven organs in six mammals and a bird. Our analyses revealed that developmentally dynamic AS events, which are especially prevalent in the brain, are substantially more conserved than nondynamic ones. Cassette exons with increasing inclusion frequencies during development show the strongest signals of conserved and regulated AS. Newly emerged cassette exons are typically incorporated late in testis development, but those retained during evolution are predominantly brain specific. Our work suggests that an intricate interplay of programs controlling gene expression levels and AS is fundamental to organ development, especially for the brain and heart. In these regulatory networks, AS affords substantial functional diversification of genes through the generation of tissue- and time-specific isoforms from broadly expressed genes.


Genes ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 854
Author(s):  
Yishu Wang ◽  
Lingyun Xu ◽  
Dongmei Ai

DNA methylation is an important regulator of gene expression that can influence tumor heterogeneity and shows weak and varying expression levels among different genes. Gastric cancer (GC) is a highly heterogeneous cancer of the digestive system with a high mortality rate worldwide. The heterogeneous subtypes of GC lead to different prognoses. In this study, we explored the relationships between DNA methylation and gene expression levels by introducing a sparse low-rank regression model based on a GC dataset with 375 tumor samples and 32 normal samples from The Cancer Genome Atlas database. Differences in the DNA methylation levels and sites were found to be associated with differences in the expressed genes related to GC development. Overall, 29 methylation-driven genes were found to be related to the GC subtypes, and in the prognostic model, we explored five prognoses related to the methylation sites. Finally, based on a low-rank matrix, seven subgroups were identified with different methylation statuses. These specific classifications based on DNA methylation levels may help to account for heterogeneity and aid in personalized treatments.


Sign in / Sign up

Export Citation Format

Share Document