scholarly journals A fast wavelet-based functional association analysis replicates several susceptibility loci for birth weight in a Norwegian population

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
William R. P. Denault ◽  
Julia Romanowska ◽  
Øyvind Helgeland ◽  
Bo Jacobsson ◽  
Håkon K. Gjessing ◽  
...  

Abstract Background Birth weight (BW) is one of the most widely studied anthropometric traits in humans because of its role in various adult-onset diseases. The number of loci associated with BW has increased dramatically since the advent of whole-genome screening approaches such as genome-wide association studies (GWASes) and meta-analyses of GWASes (GWAMAs). To further contribute to elucidating the genetic architecture of BW, we analyzed a genotyped Norwegian dataset with information on child’s BW (N=9,063) using a slightly modified version of a wavelet-based method by Shim and Stephens (2015) called WaveQTL. Results WaveQTL uses wavelet regression for regional testing and offers a more flexible functional modeling framework compared to conventional GWAS methods. To further improve WaveQTL, we added a novel feature termed “zooming strategy” to enhance the detection of associations in typically small regions. The modified WaveQTL replicated five out of the 133 loci previously identified by the largest GWAMA of BW to date by Warrington et al. (2019), even though our sample size was 26 times smaller than that study and 18 times smaller than the second largest GWAMA of BW by Horikoshi et al. (2016). In addition, the modified WaveQTL performed better in regions of high LD between SNPs. Conclusions This study is the first adaptation of the original WaveQTL method to the analysis of genome-wide genotypic data. Our results highlight the utility of the modified WaveQTL as a complementary tool for identifying loci that might escape detection by conventional genome-wide screening methods due to power issues. An attractive application of the modified WaveQTL would be to select traits from various public GWAS repositories to investigate whether they might benefit from a second analysis.

2021 ◽  
Author(s):  
Robin N Beaumont ◽  
Isabelle K Mayne ◽  
Rachel M Freathy ◽  
Caroline F Wright

Abstract Birth weight is an important factor in newborn survival; both low and high birth weights are associated with adverse later-life health outcomes. Genome-wide association studies (GWAS) have identified 190 loci associated with maternal or fetal effects on birth weight. Knowledge of the underlying causal genes is crucial to understand how these loci influence birth weight and the links between infant and adult morbidity. Numerous monogenic developmental syndromes are associated with birth weights at the extreme ends of the distribution. Genes implicated in those syndromes may provide valuable information to prioritize candidate genes at the GWAS loci. We examined the proximity of genes implicated in developmental disorders (DDs) to birth weight GWAS loci using simulations to test whether they fall disproportionately close to the GWAS loci. We found birth weight GWAS single nucleotide polymorphisms (SNPs) fall closer to such genes than expected both when the DD gene is the nearest gene to the birth weight SNP and also when examining all genes within 258 kb of the SNP. This enrichment was driven by genes causing monogenic DDs with dominant modes of inheritance. We found examples of SNPs in the intron of one gene marking plausible effects via different nearby genes, highlighting the closest gene to the SNP not necessarily being the functionally relevant gene. This is the first application of this approach to birth weight, which has helped identify GWAS loci likely to have direct fetal effects on birth weight, which could not previously be classified as fetal or maternal owing to insufficient statistical power.


Diabetes ◽  
2021 ◽  
Vol 70 (Supplement 1) ◽  
pp. 26-OR
Author(s):  
K. ALAINE BROADAWAY ◽  
XIANYONOG YIN ◽  
ALICE WILLIAMSON ◽  
EMMA WILSON ◽  
MAGIC INVESTIGATORS

Circulation ◽  
2016 ◽  
Vol 133 (suppl_1) ◽  
Author(s):  
James S Floyd ◽  
Colleen Sitlani ◽  
Christy L Avery ◽  
Eric A Whitsel ◽  
Leslie Lange ◽  
...  

Introduction: Sulfonylureas are a commonly-used class of diabetes medication that can prolong the QT-interval, which is a leading cause of drug withdrawals from the market given the possible risk of life-threatening arrhythmias. Previously, we conducted a meta-analysis of genome-wide association studies of sulfonylurea-genetic interactions on QT interval among 9 European-ancestry (EA) cohorts using cross-sectional data, with null results. To improve our power to identify novel drug-gene interactions, we have included repeated measures of medication use and QT interval and expanded our study to include several additional cohorts, including African-American (AA) and Hispanic-ancestry (HA) cohorts with a high prevalence of sulfonylurea use. To identify potentially differential effects on cardiac depolarization and repolarization, we have also added two phenotypes - the JT and QRS intervals, which together comprise the QT interval. Hypothesis: The use of repeated measures and expansion of our meta-analysis to include diverse ancestry populations will allow us to identify novel pharmacogenomic interactions for sulfonylureas on the ECG phenotypes QT, JT, and QRS. Methods: Cohorts with unrelated individuals used generalized estimating equations to estimate interactions; cohorts with related individuals used mixed effect models clustered on family. For each ECG phenotype (QT, JT, QRS), we conducted ancestry-specific (EA, AA, HA) inverse variance weighted meta-analyses using standard errors based on the t-distribution to correct for small sample inflation in the test statistic. Ancestry-specific summary estimates were combined using MANTRA, an analytic method that accounts for differences in local linkage disequilibrium between ethnic groups. Results: Our study included 65,997 participants from 21 cohorts, including 4,020 (6%) sulfonylurea users, a substantial increase from the 26,986 participants and 846 sulfonylureas users in the previous meta-analysis. Preliminary ancestry-specific meta-analyses have identified genome-wide significant associations (P < 5х10–8) for each ECG phenotype, and analyses with MANTRA are in progress. Conclusions: In the setting of the largest collection of pharmacogenomic studies to date, we used repeated measurements and leveraged diverse ancestry populations to identify new pharmacogenomic loci for ECG traits associated with cardiovascular risk.


BMC Genetics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Clemens Falker-Gieske ◽  
Hanna Iffland ◽  
Siegfried Preuß ◽  
Werner Bessei ◽  
Cord Drögemüller ◽  
...  

Abstract Background Feather pecking (FP) is damaging behavior in laying hens leading to global economic losses in the layer industry and massive impairments of animal welfare. The objective of the study was to discover genetic variants and affected genes that lead to FP behavior. To achieve that we imputed low-density genotypes from two different populations of layers divergently selected for FP to sequence level by performing whole genome sequencing on founder and half-sib individuals. In order to decipher the genetic structure of FP, genome wide association studies and meta-analyses of two resource populations were carried out by focusing on the traits ‘feather pecks delivered’ (FPD) and the ‘posterior probability of a hen to belong to the extreme feather pecking subgroup’ (pEFP). Results In this meta-analysis, we discovered numerous genes that are affected by polymorphisms significantly associated with the trait FPD. Among them SPATS2L, ZEB2, KCHN8, and MRPL13 which have been previously connected to psychiatric disorders with the latter two being responsive to nicotine treatment. Gene set enrichment analysis revealed that phosphatidylinositol signaling is affected by genes identified in the GWAS and that the Golgi apparatus as well as brain structure may be involved in the development of a FP phenotype. Further, we were able to validate a previously discovered QTL for the trait pEFP on GGA1, which contains variants affecting NIPA1, KIAA1211L, AFF3, and TSGA10. Conclusions We provide evidence for the involvement of numerous genes in the propensity to exhibit FP behavior that could aid in the selection against this unwanted trait. Furthermore, we identified variants that are involved in phosphatidylinositol signaling, Golgi metabolism and cell structure and therefore propose changes in brain structure to be an influential factor in FP, as already described in human neuropsychiatric disorders.


Author(s):  
A. J. Agopian ◽  
Elizabeth Goldmuntz ◽  
Hakon Hakonarson ◽  
Anshuman Sewda ◽  
Deanne Taylor ◽  
...  

2018 ◽  
Author(s):  
Chris Chatzinakos ◽  
Donghyung Lee ◽  
Na Cai ◽  
Vladimir I. Vladimirov ◽  
Anna Docherty ◽  
...  

ABSTRACTGenetic signal detection in genome-wide association studies (GWAS) is enhanced by pooling small signals from multiple Single Nucleotide Polymorphism (SNP), e.g. across genes and pathways. Because genes are believed to influence traits via gene expression, it is of interest to combine information from expression Quantitative Trait Loci (eQTLs) in a gene or genes in the same pathway. Such methods, widely referred as transcriptomic wide association analysis (TWAS), already exist for gene analysis. Due to the possibility of eliminating most of the confounding effect of linkage disequilibrium (LD) from TWAS gene statistics, pathway TWAS methods would be very useful in uncovering the true molecular bases of psychiatric disorders. However, such methods are not yet available for arbitrarily large pathways/gene sets. This is possibly due to it quadratic (in the number of SNPs) computational burden for computing LD across large regions. To overcome this obstacle, we propose JEPEGMIX2-P, a novel TWAS pathway method that i) has a linear computational burden, ii) uses a large and diverse reference panel (33K subjects), iii) is competitive (adjusts for background enrichment in gene TWAS statistics) and iv) is applicable as-is to ethnically mixed cohorts. To underline its potential for increasing the power to uncover genetic signals over the state-of-the-art and commonly used non-transcriptomics methods, e.g. MAGMA, we applied JEPEGMIX2-P to summary statistics of most large meta-analyses from Psychiatric Genetics Consortium (PGC). While our work is just the very first step toward clinical translation of psychiatric disorders, PGC anorexia results suggest a possible avenue for treatment.


2019 ◽  
Vol 28 (18) ◽  
pp. 3148-3160 ◽  
Author(s):  
Upekha E Liyanage ◽  
Matthew H Law ◽  
Xikun Han ◽  
Jiyuan An ◽  
Jue-Sheng Ong ◽  
...  

Abstract The keratinocyte cancers (KC), basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) are the most common cancers in fair-skinned people. KC treatment represents the second highest cancer healthcare expenditure in Australia. Increasing our understanding of the genetic architecture of KC may provide new avenues for prevention and treatment. We first conducted a series of genome-wide association studies (GWAS) of KC across three European ancestry datasets from Australia, Europe and USA, and used linkage disequilibrium (LD) Score regression (LDSC) to estimate their pairwise genetic correlations. We employed a multiple-trait approach to map genes across the combined set of KC GWAS (total N = 47 742 cases, 634 413 controls). We also performed meta-analyses of BCC and SCC separately to identify trait specific loci. We found substantial genetic correlations (generally 0.5–1) between BCC and SCC suggesting overlapping genetic risk variants. The multiple trait combined KC GWAS identified 63 independent genome-wide significant loci, 29 of which were novel. Individual separate meta-analyses of BCC and SCC identified an additional 13 novel loci not found in the combined KC analysis. Three new loci were implicated using gene-based tests. New loci included common variants in BRCA2 (distinct to known rare high penetrance cancer risk variants), and in CTLA4, a target of immunotherapy in melanoma. We found shared and trait specific genetic contributions to BCC and SCC. Considering both, we identified a total of 79 independent risk loci, 45 of which are novel.


Sign in / Sign up

Export Citation Format

Share Document