scholarly journals Transcriptome-wide m6A profiling reveals mRNA post-transcriptional modification of boar sperm during cryopreservation

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Ziyue Qin ◽  
Wencan Wang ◽  
Malik Ahsan Ali ◽  
Yihan Wang ◽  
Yan Zhang ◽  
...  

Abstract Background Cryopreservation induces transcriptomic and epigenetic modifications that strongly impairs sperm quality and function, and thus decrease reproductive performance. N6-methyladenosine (m6A) RNA methylation varies in response to stress and has been implicated in multiple important biological processes, including post-transcriptional fate of mRNA, metabolism, and apoptosis. This study aimed to explore whether cryopreservation induces m6A modification of mRNAs associated with sperm energy metabolism, cryoinjuries, and freezability. Results The mRNA and protein expression of m6A modification enzymes were significantly dysregulated in sperm after cryopreservation. Furthermore, m6A peaks were mainly enriched in coding regions and near stop codons with classical RRACH motifs. The mRNAs containing highly methylated m6A peaks (fts vs. fs) were significantly associated with metabolism and gene expression, while the genes with less methylated m6A peaks were primarily involved in processes regulating RNA metabolism and transcription. Furthermore, the joint analysis of DMMGs and differentially expressed genes indicated that both of these play a vital role in sperm energy metabolism and apoptosis. Conclusions Our study is the first to reveal the dynamic m6A modification of mRNAs in boar sperm during cryopreservation. These epigenetic modifications may affect mRNA expression and are closely related to sperm motility, apoptosis, and metabolism, which will provide novel insights into understanding of the cryoinjuries or freezability of boar sperm during cryopreservation.

2020 ◽  
Vol 55 (12) ◽  
pp. 1714-1724
Author(s):  
Tian‐Yu Feng ◽  
Dong‐Liang Lv ◽  
Xing Zhang ◽  
Ye‐Qing Du ◽  
Yi‐Tian Yuan ◽  
...  

2020 ◽  
Vol 41 (5) ◽  
pp. 527-538
Author(s):  
Rong-Nan Li ◽  
◽  
◽  
Zhen-Dong Zhu ◽  
Yi Zheng ◽  
...  

2019 ◽  
Vol 20 (24) ◽  
pp. 6255 ◽  
Author(s):  
Ariadna Delgado-Bermúdez ◽  
Marc Llavanera ◽  
Sandra Recuero ◽  
Yentel Mateo-Otero ◽  
Sergi Bonet ◽  
...  

Aquaporins (AQPs) are transmembrane channels with permeability to water and small solutes that can be classified according to their structure and permeability into orthodox AQPs, aquaglyceroporins (GLPs), and superAQPs. In boar spermatozoa, AQPs are related to osmoregulation and play a critical role in maturation and motility activation. In addition, their levels differ between ejaculates with good and poor cryotolerance (GFE and PFE, respectively). The aim of this work was to elucidate whether the involvement of AQPs in the sperm response to cryopreservation relies on the intrinsic freezability of the ejaculate. With this purpose, two different molecules: phloretin (PHL) and 1,3-propanediol (PDO), were used to inhibit sperm AQPs in GFE and PFE. Boar sperm samples were treated with three different concentrations of each inhibitor prior to cryopreservation, and sperm quality and functionality parameters were evaluated in fresh samples and after 30 and 240 min of thawing. Ejaculates were classified as GFE or PFE, according to their post-thaw sperm viability and motility. While the presence of PHL caused a decrease in sperm quality and function compared to the control, samples treated with PDO exhibited better quality and function parameters than the control. In addition, the effects of both inhibitors were more apparent in GFE than in PFE. In conclusion, AQP inhibition has more notable consequences in GFE than in PFE, which can be related to the difference in relative levels of AQPs between these two groups of samples.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Luís Crisóstomo ◽  
Ivana Jarak ◽  
Luís P. Rato ◽  
João F. Raposo ◽  
Rachel L. Batterham ◽  
...  

AbstractThe consumption of energy-dense diets has contributed to an increase in the prevalence of obesity and its comorbidities worldwide. The adoption of unhealthy feeding habits often occurs at early age, prompting the early onset of metabolic disease with unknown consequences for reproductive function later in life. Recently, evidence has emerged regarding the intergenerational and transgenerational effects of high-fat diets (HFD) on sperm parameters and testicular metabolism. Hereby, we study the impact of high-fat feeding male mice (F0) on the testicular metabolome and function of their sons (F1) and grandsons (F2). Testicular content of metabolites related to insulin resistance, cell membrane remodeling, nutritional support and antioxidative stress (leucine, acetate, glycine, glutamine, inosine) were altered in sons and grandsons of mice fed with HFD, comparing to descendants of chow-fed mice. Sperm counts were lower in the grandsons of mice fed with HFD, even if transient. Sperm quality was correlated to testicular metabolite content in all generations. Principal Component Analysis of sperm parameters and testicular metabolites revealed an HFD-related phenotype, especially in the diet-challenged generation and their grandsons. Ancestral HFD, even if transient, causes transgenerational “inherited metabolic memory” in the testicular tissue, characterized by changes in testicular metabolome and function.


2015 ◽  
Vol 34 (4) ◽  
pp. 300-307 ◽  
Author(s):  
Swati Omanwar ◽  
M. Fahim

Vascular endothelium plays a vital role in the organization and function of the blood vessel and maintains homeostasis of the circulatory system and normal arterial function. Functional disruption of the endothelium is recognized as the beginning event that triggers the development of consequent cardiovascular disease (CVD) including atherosclerosis and coronary heart disease. There is a growing data associating mercury exposure with endothelial dysfunction and higher risk of CVD. This review explores and evaluates the impact of mercury exposure on CVD and endothelial function, highlighting the interplay of nitric oxide and oxidative stress.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Qianshuo Liu ◽  
Xiaobai Liu ◽  
Defeng Zhao ◽  
Xuelei Ruan ◽  
Rui Su ◽  
...  

AbstractThe blood–brain barrier (BBB) has a vital role in maintaining the homeostasis of the central nervous system (CNS). Changes in the structure and function of BBB can accelerate Alzheimer’s disease (AD) development. β-Amyloid (Aβ) deposition is the major pathological event of AD. We elucidated the function and possible molecular mechanisms of the effect of pseudogene ACTBP2 on the permeability of BBB in Aβ1–42 microenvironment. BBB model treated with Aβ1–42 for 48 h were used to simulate Aβ-mediated BBB dysfunction in AD. We proved that pseudogene ACTBP2, RNA-binding protein KHDRBS2, and transcription factor HEY2 are highly expressed in ECs that were obtained in a BBB model in vitro in Aβ1–42 microenvironment. In Aβ1–42-incubated ECs, ACTBP2 recruits methyltransferases KMT2D and WDR5, binds to KHDRBS2 promoter, and promotes KHDRBS2 transcription. The interaction of KHDRBS2 with the 3′UTR of HEY2 mRNA increases the stability of HEY2 and promotes its expression. HEY2 increases BBB permeability in Aβ1–42 microenvironment by transcriptionally inhibiting the expression of ZO-1, occludin, and claudin-5. We confirmed that knocking down of Khdrbs2 or Hey2 increased the expression levels of ZO-1, occludin, and claudin-5 in APP/PS1 mice brain microvessels. ACTBP2/KHDRBS2/HEY2 axis has a crucial role in the regulation of BBB permeability in Aβ1–42 microenvironment, which may provide a novel target for the therapy of AD.


Author(s):  
Meysam T. Chorsi ◽  
Pouya Tavousi ◽  
Caitlyn Mundrane ◽  
Vitaliy Gorbatyuk ◽  
Kazem Kazerounian ◽  
...  

Abstract Natural nanomechanisms such as capillaries, neurotransmitters, and ion channels play a vital role in the living systems. But the design principles developed by nature through evolution are not well understood and, hence, not applicable to engineered nanomachines. Thus, the design of nanoscale mechanisms with prescribed functions remains a challenge. Here, we present a systematic approach based on established kinematics techniques to designing, analyzing, and controlling manufacturable nanomachines with prescribed mobility and function built from a finite but extendable number of available "molecular primitives." Our framework allows the systematic exploration of the design space of irreducibly simple nanomachines, built with prescribed motion specification by combining available nanocomponents into systems having constrained, and consequently controllable motions. We show that the proposed framework has allowed us to discover and verify a molecule in the form of a seven link, seven revolute (7R) close loop spatial linkage with mobility (degree of freedom) of one. Furthermore, our experiments exhibit the type and range of motion predicted by our simulations. Enhancing such a structure into functional nanomechanisms by exploiting and controlling their motions individually or as part of an ensemble could galvanize development of the multitude of engineering, scientific, medical, and consumer applications that can benefit from engineered nanomachines.


2016 ◽  
Vol 40 (1-2) ◽  
pp. 347-360 ◽  
Author(s):  
Jing Zhang ◽  
Sheng Jun An ◽  
Jun Qiu Fu ◽  
Pei Liu ◽  
Tie Mei Shao ◽  
...  

Background/Aims: Salvia miltiorrhiza (SM) contains four major aqueous active ingredients, which have been isolated, purified and identified as danshensu (DSS), salvianolic acid A (Sal-A), salvianolic acid B (Sal-B) and protocatechuic aldehyde (PAL), totally abbreviated as SABP. Although SM is often used to treat various cardiovascular diseases in traditional Chinese medicine, the efficacy and function of optimal compatibility ratio of SM's active ingredients (SABP) in the prevention and treatment of cardiovascular diseases remain uncertain. This study investigated antihypertensive effect and underlying mechanisms of SABP vs. SM lyophilized powder (SMLP) in spontaneously hypertensive rats (SHR) and to establish the ratio of the optimal compatibility of DSS, Sal-A, Sal-B and PAL in improving cardiovascular functions. Methods: The SHRs were treated with either SABP or SMLP and their systolic blood pressures (SBP) were monitored. The isolated thoracic aorta of SHRs was segregated for immunohistochemistry, Hematoxylin-Eosin stain and mRNA and protein expression of NOX4, TGF-β1, Col-I, ET-1, α-SMA and Smad7. Moreover, the adventitial fibroblasts (AFs) were isolated and cultured from SD rats' aorta and the reactive oxygen species (ROS) production was determined after SABP or SMLP treatment. Results: SABP, but not SMLP, significantly reduced SBP, which were accompanied by the inhibited morphological changes in the thoracic aorta and the reduced mRNA and protein expression of NOX4, TGF-β1, Col-I, ET-1 and α-SMA, but the increased Smad 7 expression in SHRs. Moreover, SABP also resulted in a decreased ROS production in AFs of SD rats. Conclusions: These results indicate that SABP, but not SMLP, treatment potently inhibits hypertension through improvements of vascular remodeling and oxidative stress. The present study provides new evidence that the efficacy and function from optimal compatibility ratio of SM active ingredients is much better than its lyophilized powder, which represents a strategy to develop SM's new beneficial effect in improving cardiovascular functions.


Sign in / Sign up

Export Citation Format

Share Document