scholarly journals Comparison of carbohydrate ABC importers from Mycobacterium tuberculosis

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Lilia I. De la Torre ◽  
José G. Vergara Meza ◽  
Sindy Cabarca ◽  
André G. Costa-Martins ◽  
Andrea Balan

Abstract Background Mycobacterium tuberculosis, the etiological agent of tuberculosis, has at least four ATP-Binding Cassette (ABC) transporters dedicated to carbohydrate uptake: LpqY/SugABC, UspABC, Rv2038c-41c, and UgpAEBC. LpqY/SugABC transporter is essential for M. tuberculosis survival in vivo and potentially involved in the recycling of cell wall components. The three-dimensional structures of substrate-binding proteins (SBPs) LpqY, UspC, and UgpB were described, however, questions about how these proteins interact with the cognate transporter are still being explored. Components of these transporters, such as SBPs, show high immunogenicity and could be used for the development of diagnostic and therapeutic tools. In this work, we used a phylogenetic and structural bioinformatics approach to compare the four systems, in an attempt to predict functionally important regions. Results Through the analysis of the putative orthologs of the carbohydrate ABC importers in species of Mycobacterium genus it was shown that Rv2038c-41c and UgpAEBC systems are restricted to pathogenic species. We showed that the components of the four ABC importers are phylogenetically separated into four groups defined by structural differences in regions that modulate the functional activity or the interaction with domain partners. The regulatory region in nucleotide-binding domains, the periplasmic interface in transmembrane domains and the ligand-binding pocket of the substrate-binding proteins define their substrates and segregation in different branches. The interface between transmembrane domains and nucleotide-binding domains show conservation of residues and charge. Conclusions The presence of four ABC transporters in M. tuberculosis dedicated to uptake and transport of different carbohydrate sources, and the exclusivity of at least two of them being present only in pathogenic species of Mycobacterium genus, highlights their relevance in virulence and pathogenesis. The significant differences in the SBPs, not present in eukaryotes, and in the regulatory region of NBDs can be explored for the development of inhibitory drugs targeting the bacillus. The possible promiscuity of NBDs also contributes to a less specific and more comprehensive control approach.

2020 ◽  
Author(s):  
Marija Iljina ◽  
Hisham Mazal ◽  
Pierre Goloubinoff ◽  
Inbal Riven ◽  
Gilad Haran

AbstractClpB is an ATP-dependent protein disaggregation machine that is activated on demand by co-chaperones and by aggregates caused by heat shock or mutations. The regulation of ClpB’s function is critical, since its persistent activation is toxic in vivo. Each ClpB molecule is composed of an auxiliary N-terminal domain (NTD), an essential regulatory middle domain (MD) that activates the machine by tilting, and two nucleotide-binding domains that are responsible for ATP-fuelled substrate threading. The NTD is generally thought to serve as a substrate-binding domain, which is commonly considered to be dispensable for ClpB’s activity, and is not well-characterized structurally due to its high mobility. Here we use single-molecule FRET spectroscopy to directly monitor the real-time dynamics of ClpB’s NTD and reveal its involvement in novel allosteric interactions. We find that the NTD fluctuates on a microsecond timescale and, unexpectedly, shows little change in conformational dynamics upon binding of a substrate protein. During its fast motion, the NTD makes crucial contacts with the regulatory MD, directly affecting its conformational state and thereby influencing the overall ATPase and unfolding activity of this machine. Moreover, we also show that the NTD mediates signal transduction to the nucleotide-binding domains through conserved residues. The two regulatory pathways revealed here enable the NTD to suppress the MD in the absence of protein substrate, and to limit ATPase and disaggregation activities of ClpB. The use of multiple parallel allosteric pathways involving ultrafast domain motions might be common to AAA+ molecular machines to ensure their fast and reversible activation.


2006 ◽  
Vol 401 (2) ◽  
pp. 581-586 ◽  
Author(s):  
Fiona L. L. Stratford ◽  
Mohabir Ramjeesingh ◽  
Joanne C. Cheung ◽  
Ling-JUN Huan ◽  
Christine E. Bear

CFTR (cystic fibrosis transmembrane conductance regulator), a member of the ABC (ATP-binding cassette) superfamily of membrane proteins, possesses two NBDs (nucleotide-binding domains) in addition to two MSDs (membrane spanning domains) and the regulatory ‘R’ domain. The two NBDs of CFTR have been modelled as a heterodimer, stabilized by ATP binding at two sites in the NBD interface. It has been suggested that ATP hydrolysis occurs at only one of these sites as the putative catalytic base is only conserved in NBD2 of CFTR (Glu1371), but not in NBD1 where the corresponding residue is a serine, Ser573. Previously, we showed that fragments of CFTR corresponding to NBD1 and NBD2 can be purified and co-reconstituted to form a heterodimer capable of ATPase activity. In the present study, we show that the two NBD fragments form a complex in vivo, supporting the utility of this model system to evaluate the role of Glu1371 in ATP binding and hydrolysis. The present studies revealed that a mutant NBD2 (E1371Q) retains wild-type nucleotide binding affinity of NBD2. On the other hand, this substitution abolished the ATPase activity formed by the co-purified complex. Interestingly, introduction of a glutamate residue in place of the non-conserved Ser573 in NBD1 did not confer additional ATPase activity by the heterodimer, implicating a vital role for multiple residues in formation of the catalytic site. These findings provide the first biochemical evidence suggesting that the Walker B residue: Glu1371, plays a primary role in the ATPase activity conferred by the NBD1–NBD2 heterodimer.


2018 ◽  
Author(s):  
Tim Schneider ◽  
Lee-Hsueh Hung ◽  
Masood Aziz ◽  
Anna Wilmen ◽  
Stephanie Thaum ◽  
...  

AbstractHow multidomain RNA-binding proteins recognize their specific target sequences, based on a combinatorial code, represents a fundamental unsolved question and has not been studied systematically so far. Here we focus on a prototypical multidomain RNA-binding protein, IMP3 (also called IGF2BP3), which contains six RNA-binding domains (RBDs): four KH and two RRM domains. We have established an integrative systematic strategy, combining single-domain-resolved SELEX-seq, motif-spacing analyses, in vivo iCLIP, functional validation assays, and structural biology. This approach identifies the RNA-binding specificity and RNP topology of IMP3, involving all six RBDs and a cluster of up to five distinct and appropriately spaced CA-rich and GGC-core RNA elements, covering a >100 nucleotide-long target RNA region. Our generally applicable approach explains both specificity and flexibility of IMP3-RNA recognition, providing a paradigm for the function of multivalent interactions with multidomain RNA-binding proteins in gene regulation.


2006 ◽  
Vol 282 (7) ◽  
pp. 4719-4727 ◽  
Author(s):  
Tsui-Fen Chou ◽  
Carston R. Wagner

Histidine triad nucleotide binding proteins (Hints) are the most ancient members of the histidine triad protein superfamily of nucleotidyltransferases and hydrolyases. Protein-protein interaction studies have found that complexes of the transcription factors MITF or USF2 and lysyl-tRNA synthetase (LysRS) are associated with human Hint1. Therefore, we hypothesized that lysyl-AMP or the LysRS·lysyl-AMP may be a native substrate for Hints. To explore the biochemical relationship between Hint1 and LysRS, a series of catalytic radiolabeling, mutagenesis, and kinetic experiments was conducted with purified LysRSs and Hints from human and Escherichia coli. After incubation of the E. coli or human LysRS with Hints and [α-32P]ATP, but not [α-32P]GTP, 32P-labeled Hints were observed. By varying time and the concentrations of lysine, Mg2+, or LysRS, the adenylation of Hint was found to be dependent on the formation of lysyl-AMP. Site-directed mutagenesis studies of the active site histidine triad revealed that Hint labeling could be abolished by substitution of either His-101 of E. coli hinT or His-112 of human Hint1 by either alanine or glycine. Ap4A, believed to be synthesized by LysRS in vivo, and Zn2+ were shown to inhibit the formation of Hint-AMP with an IC50 value in the low micromolar range. Consistent with pyrophosphate being an inhibitor for aminoacyl-tRNA synthetase, incubations in the presence of pyrophosphatase resulted in enhanced formation of Hint-AMP. These results demonstrate that the lysyl-AMP intermediate formed by LysRS is a natural substrate for Hints and suggests a potential highly conserved regulatory role for Hints on LysRS and possibly other aminoacyl-tRNA synthetases.


2006 ◽  
Vol 17 (8) ◽  
pp. 3423-3434 ◽  
Author(s):  
William Y. Tsang ◽  
Alexander Spektor ◽  
Daniel J. Luciano ◽  
Vahan B. Indjeian ◽  
Zhihong Chen ◽  
...  

The centrosome is an integral component of the eukaryotic cell cycle machinery, yet very few centrosomal proteins have been fully characterized to date. We have undertaken a series of biochemical and RNA interference (RNAi) studies to elucidate a role for CP110 in the centrosome cycle. Using a combination of yeast two-hybrid screens and biochemical analyses, we report that CP110 interacts with two different Ca2+-binding proteins, calmodulin (CaM) and centrin, in vivo. In vitro binding experiments reveal a direct, robust interaction between CP110 and CaM and the existence of multiple high-affinity CaM-binding domains in CP110. Native CP110 exists in large (∼300 kDa to 3 MDa) complexes that contain both centrin and CaM. We investigated a role for CP110 in CaM-mediated events using RNAi and show that its depletion leads to a failure at a late stage of cytokinesis and the formation of binucleate cells, mirroring the defects resulting from ablation of either CaM or centrin function. Importantly, expression of a CP110 mutant unable to bind CaM also promotes cytokinesis failure and binucleate cell formation. Taken together, our data demonstrate a functional role for CaM binding to CP110 and suggest that CP110 cooperates with CaM and centrin to regulate progression through cytokinesis.


2000 ◽  
Vol 276 (15) ◽  
pp. 11575-11581 ◽  
Author(s):  
Ilana Kogan ◽  
Mohabir Ramjeesingh ◽  
Ling-Jun Huan ◽  
Yanchun Wang ◽  
Christine E. Bear

Mutations in the cystic fibrosis gene coding for the cystic fibrosis transmembrane conductance regulator (CFTR) lead to altered chloride (Cl−) flux in affected epithelial tissues. CFTR is a Cl−channel that is regulated by phosphorylation, nucleotide binding, and hydrolysis. However, the molecular basis for the functional regulation of wild type and mutant CFTR remains poorly understood. CFTR possesses two nucleotide binding domains, a phosphorylation-dependent regulatory domain, and two transmembrane domains that comprise the pore through which Cl−permeates. Mutations of residues lining the channel pore (e.g.R347D) are typically thought to cause disease by altering the interaction of Cl−with the pore. However, in the present study we show that the R347D mutation and diphenylamine-2-carboxylate (an open pore inhibitor) also inhibit CFTR ATPase activity, revealing a novel mechanism for cross-talk from the pore to the catalytic domains. In both cases, the reduction in ATPase correlates with a decrease in nucleotide turnover rather than affinity. Finally, we demonstrate that glutathione (GSH) inhibits CFTR ATPase and that this inhibition is altered in the CFTR-R347D variant. These findings suggest that cross-talk between the pore and nucleotide binding domains of CFTR may be important in thein vivoregulation of CFTR in health and disease.


Sign in / Sign up

Export Citation Format

Share Document