scholarly journals Genome-wide identification, characteristics and expression of the prolamin genes in Thinopyrum elongatum

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Wenyang Ge ◽  
Yu Gao ◽  
Shoushen Xu ◽  
Xin Ma ◽  
Hongwei Wang ◽  
...  

Abstract Background Prolamins, unique to Gramineae (grasses), play a key role in the human diet. Thinopyrum elongatum (syn. Agropyron elongatum or Lophopyrum elongatum), a grass of the Triticeae family with a diploid E genome (2n = 2x = 14), is genetically well-characterized, but little is known about its prolamin genes and the relationships with homologous loci in the Triticeae species. Results In this study, a total of 19 α-gliadin, 9 γ-gliadin, 19 ω-gliadin, 2 high-molecular-weight glutenin subunit (HMW-GS), and 5 low-molecular-weight glutenin subunit (LMW-GS) genes were identified in the Th. elongatum genome. Micro-synteny and phylogenetic analysis revealed dynamic changes of prolamin gene regions and genetic affinities among Th. elongatum, Triticum aestivum, T. urartu and Aegilops tauschii. The Th. elongatum genome, like the B subgenome of T. aestivum, only contained celiac disease epitope DQ8-glia-α1/DQ8.5-glia-α1, which provided a theoretical basis for the low gluten toxicity wheat breeding. The transcriptome data of Th. elongatum exhibited differential expression in quantity and pattern in the same subfamily or different subfamilies. Dough rheological properties of T. aestivum-Th. elongatum disomic substitution (DS) line 1E(1D) showed higher peak height values than that of their parents, and DS6E(6D) exhibited fewer α-gliadins, which indicates the potential usage for wheat quality breeding. Conclusions Overall, this study provided a comprehensive overview of the prolamin gene family in Th. elongatum, and suggested a promising use of this species in the generation of improved wheat breeds intended for the human diet.

2021 ◽  
Author(s):  
Yu Gao ◽  
Shoushen Xu ◽  
Xin Ma ◽  
Hongwei Wang ◽  
Lingrang Kong ◽  
...  

Abstract Background: Prolamins, unique to Gramineae (grasses), play a key role in the human diet. Thinopyrum elongatum (also known as tall wheatgrass, rush wheatgrass, or Eurasian quackgrass) of Elytrigia is genetically well-characterized, but little is known about its prolamin genes and the relationships with homologous loci in the Triticum genus.Results: In this study, a total of 19 α-gliadin, 9 γ-gliadin, 19 ω-gliadin, 2 high-molecular-weight glutenin subunit (HMW-GS), and 5 low-molecular-weight glutenin subunit (LMW-GS) genes in the Th. elongatum genome were annotated. The transcriptome data of Th. elongatum exhibited differential expression in quantity and pattern in the same subfamily or different subfamilies. In addition, microsynteny and phylogenetic analysis revealed dynamic changes of prolamin gene region and genetic affinities among Th. elongatum, T. aestivum, T. urartu, and Aegilops tauschii. The E genome, like the B genome, only contained DQ8-glia-α1/DQ8.5-glia-α1, which provided a theoretical basis for the study of celiac disease (CD). Dough rheological properties of T. aestivum-Th. elongatum disomic substitution (DS) lines 1E(1A), 1E(1D), and 3E(3A) showed much higher peak height values than that of their parent.Conclusions: Overall, this study provides a comprehensive overview of the prolamin gene superfamily in Th. elongatum, and suggests a promising use of this species in the generation of improved wheat breeds intended for the human diet.


Plants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1517
Author(s):  
Dongjin Shin ◽  
Jin-Kyung Cha ◽  
So-Myeong Lee ◽  
Nkulu Rolly Kabange ◽  
Jong-Hee Lee

Lab-on-a-chip technology is an emerging and convenient system to easily and quickly separate proteins of high molecular weight. The current study established a high-molecular-weight glutenin subunit (HMW-GS) identification system using Lab-on-a-chip for three, six, and three of the allelic variations at the Glu-A1, Glu-B1, and Glu-D1 loci, respectively, which are commonly used in wheat breeding programs. The molecular weight of 1Ax1 and 1Ax2* encoded by Glu-A1 locus were of 200 kDa and 192 kDa and positioned below 1Dx subunits. The HMW-GS encoded by Glu-B1 locus were electrophoresed in the following order below 1Ax1 and 1Ax2*: 1Bx13 ≥ 1Bx7 = 1Bx7OE > 1Bx17 > 1By16 > 1By8 = 1By18 > 1By9. 1Dx2 and Dx5 showed around 4-kDa difference in their molecular weights, with 1Dy10 and 1Dy12 having 11-kDa difference, and were clearly differentiated on Lab-on-a-chip. Additionally, some of the HMW-GS, including 1By8, 1By18, and 1Dy10, having different theoretical molecular weights showed similar electrophoretic mobility patterns on Lab-on-a-chip. The relative protein amount of 1Bx7OE was two-fold higher than that of 1Bx7 or 1Dx5 and, therefore, translated a significant increase in the protein amount in 1Bx7OE. Similarly, the relative protein amounts of 8 & 10 and 10 & 18 were higher than each subunit taken alone. Therefore, this study suggests the established HMW-GS identification system using Lab-on-a-chip as a reliable approach for evaluating HMW-GS for wheat breeding programs.


2006 ◽  
Vol 57 (10) ◽  
pp. 1109 ◽  
Author(s):  
Ali-Akbar Shahnejat-Bushehri ◽  
Masoud Gomarian ◽  
Bahman Yazdi-Samadi

All current and old wheat cultivars grown in Iran were characterised by sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE). The high-molecular-weight glutenin subunit (HMW-GS) banding patterns for each cultivar were assigned a Glu-1 quality score, a theoretical quality score based on Payne’s Glu-1 quality assignments. At the Glu-A1 loci, HMW-GS subunit compositions N, 7 + 8, 2 + 12 and 2*, 7 + 8, 2 + 12 were found to be predominant being expressed in 24 and 15 cultivars, respectively, out of 95. Eighteen different alleles were identified for the 3 loci studied: Glu-A1 (3), Glu-B1 (9), and Glu-D1 (6). The glutenin quality scores of Iranian wheat ranged from 4 to 10, with an average of 7.4. It was found that some cultivars were heterogeneous in HMW-GS composition. In cv. Cooleh, only one glutenin subunit at the Glu-B1 locus was present. HMW-GS 2*** + 12′ was found in 6 cultivars and biotypes. The results obtained here describing the allelic composition of bread wheat commonly grown in Iran may be useful in wheat breeding programs selecting for good quality parameters.


Sign in / Sign up

Export Citation Format

Share Document