scholarly journals Expression of transport proteins in the rete mirabile of european silver and yellow eel

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Gabriel Schneebauer ◽  
Victoria Drechsel ◽  
Ron Dirks ◽  
Klaus Faserl ◽  
Bettina Sarg ◽  
...  

Abstract Background In physoclist fishes filling of the swimbladder requires acid secretion of gas gland cells to switch on the Root effect and subsequent countercurrent concentration of the initial gas partial pressure increase by back-diffusion of gas molecules in the rete mirabile. It is generally assumed that the rete mirabile functions as a passive exchanger, but a detailed analysis of lactate and water movements in the rete mirabile of the eel revealed that lactate is diffusing back in the rete. In the present study we therefore test the hypothesis that expression of transport proteins in rete capillaries allows for back-diffusion of ions and metabolites, which would support the countercurrent concentrating capacity of the rete mirabile. It is also assumed that in silver eels, the migratory stage of the eel, the expression of transport proteins would be enhanced. Results Analysis of the transcriptome and of the proteome of rete mirabile tissue of the European eel revealed the expression of a large number of membrane ion and metabolite transport proteins, including monocarboxylate and glucose transport proteins. In addition, ion channel proteins, Ca2+-ATPase, Na+/K+-ATPase and also F1F0-ATP synthase were detected. In contrast to our expectation in silver eels the expression of these transport proteins was not elevated as compared to yellow eels. A remarkable number of enzymes degrading reactive oxygen species (ROS) was detected in rete capillaries. Conclusions Our results reveal the expression of a large number of transport proteins in rete capillaries, so that the back diffusion of ions and metabolites, in particular lactate, may significantly enhance the countercurrent concentrating ability of the rete. Metabolic pathways allowing for aerobic generation of ATP supporting secondary active transport mechanisms are established. Rete tissue appears to be equipped with a high ROS defense capacity, preventing damage of the tissue due to the high oxygen partial pressures generated in the countercurrent system.

1966 ◽  
Vol 49 (6) ◽  
pp. 1209-1220 ◽  
Author(s):  
H.J. KUHN ◽  
E. MARTI

The active transport of oxygen and carbon dioxide into the swim-bladder of fish is discussed. The rete mirabile is a capillary network which is involved in the gas secretion into the bladder. The rete is regarded as a counter-current multiplier. Lactic acid which is produced in the gas gland generates in the rete single concentrating effects for oxygen and carbon dioxide; i.e., for equal partial pressures the concentrations of the gases in the afferent rete capillaries are higher than those in the efferent ones. The single concentrating effects were calculated from measurements of sea robin blood (Root, 1931). The multiplication of these effects within the rete for different rete lengths and different transport rates was numerically evaluated. The calculated O2 and CO2 pressures in the bladder are in good agreement with the experimental results of Scholander and van Dam (1953). The descent velocities at equilibrium between bladder pressure and hydrostatic pressure are discussed for fishes with different rete lengths.


1961 ◽  
Vol 44 (3) ◽  
pp. 527-542 ◽  
Author(s):  
Jonathan B. Wittenberg ◽  
Beatrice A. Wittenberg

Toadfish, Opsanus tau, L., were maintained in sea water equilibrated with gas mixtures containing a fixed proportion of oxygen and varying proportions of carbon monoxide. The swim-bladder was emptied by puncture, and, after an interval of 24 or 48 hours, the newly secreted gases were withdrawn and analyzed. Both carbon monoxide and oxygen are accumulated in the swim-bladder at tensions greater than ambient. The ratio of concentrations, carbon monoxide (secreted): carbon monoxide (administered) bears a constant relation to the ratio, oxygen (secreted): oxygen (administered). The value of the partition coefficient describing this relation is (α = 5.44). The two gases are considered to compete for a common intracellular carrier mediating their active transport. The suggestion is advanced that the intracellular oxygen carrier is a hemoglobin. Comparison of the proportions of carboxy- and oxyhemoglobin in the blood with the composition of the secreted gas proves that the secreted gases are not evolved directly from combination with blood hemoglobin. The suggestion is advanced that cellular oxygen secretion occurs in the rete mirabile: the rete may build up large oxygen tensions in the gas gland capillaries. It is suggested that the gas gland acts as a valve impeding back diffusion of gases from the swim-bladder.


1989 ◽  
Vol 144 (1) ◽  
pp. 495-506 ◽  
Author(s):  
B. PELSTER ◽  
H. KOBAYASHI ◽  
P. SCHEID

We have measured the metabolic activity in the vascularly isolated, salineperfused swimbladder of the eel (Anguilla anguilla) in order to investigate the pathways for CO2 formation in the gas gland tissue. Concentrations of O2, CO2, glucose and lactate were measured in the arterial inflow and venous outflow of the swimbladder, and metabolic rates were calculated by the direct Fick principle. 1. Total CO2 production, averaging 55.8nmol min−1, was about 4.6 times the O2 consumption (mean 12.0nmol min−1). This suggests that only about 22% of the CO2 is formed by aerobic glucose metabolism. 2. CO2 formation from HCO3− or CO2 washout does not appear to be significant in our experiments with steady perfusion of a saline containing a low level of HCO3−. 3. The ratio of lactate production to glucose uptake averaged 1.2, indicating that only 60% of the glucose is converted to lactate. Since only 1–2% of the glucose was found to be oxidized (2 nmol min−1), the extra glucose appears to be anoxidatively metabolized to CO2. 4. The anoxidative CO2 formation appears to be of functional importance for producing the high gas partial pressures of both CO2 and O2 which are required for secretion of these gases into the swimbladder.


2002 ◽  
Vol 205 (17) ◽  
pp. 2643-2651 ◽  
Author(s):  
Christopher P. Cutler ◽  
Gordon Cramb

SUMMARYA cDNA encoding the homologue of mammalian aquaporin 3 (AQP-3) was isolated by reverse transcription—polymerase chain reaction from the gill of the European eel. The derived amino acid sequence shares 67-70% homology with other vertebrate AQP-3 homologues. Northern blot analysis revealed two AQP-3-specific mRNA species of 2.4 kb and 7 kb. AQP-3 mRNA is expressed predominantly in the eye, oesophagus, intestine (as found in mammals) and the gill; no expression could be demonstrated in the stomach and only low and sporadic levels in the kidney. Quantitative studies demonstrated that,following the 3-week acclimation of freshwater (FW)-adapted yellow and silver eels to seawater (SW), transcript abundance in the gill was reduced by 76% and 97%, respectively. The half time of branchial AQP-3 mRNA downregulation in yellow eels was approximately 10 h, with a maximal 94% decrease in expression after 2 days in SW (compared to time-matched FW controls). However, in fish acclimated to SW for more than 4 days, the fall in AQP-3 mRNA abundance recovered slightly, such that after 3 weeks, expression was 16% of that in time-matched FW controls. The potential roles for this aquaporin isoform in water or solute transport in the eel gill are discussed.


1978 ◽  
Vol 44 (4) ◽  
pp. 528-533 ◽  
Author(s):  
J. Seylaz ◽  
E. Pinard

A mass spectrograph technique has been developed for measurement of physiological gas partial pressures locally in the brain. The sampling cannula is implanted stereotaxically and remains in situ for several weeks. It is a thin cylinder in shape, and is covered with a thin polyethylene membrane across which gas molecules can be sampled continuously. The conductance of this membrane is well adapted to the limited rate of replacement of gas molecules afforded by the cerebral tissue, hence there is no depletion around the cannula; this depletion has until now been the major problem of this technology. The present technique provides a continuous measurement with fast response time, which is directly proportional to the partial pressures of the gases. The variations can be expressed as a percentage of the base-line value.


2018 ◽  
Vol 14 (7) ◽  
pp. 20180269 ◽  
Author(s):  
Kazuki Yokouchi ◽  
Françoise Daverat ◽  
Michael J. Miller ◽  
Nobuto Fukuda ◽  
Ryusuke Sudo ◽  
...  

Many diadromous fishes such as salmon and eels that move between freshwater and the ocean have evolved semelparous reproductive strategies, but both groups display considerable plasticity in characteristics. Factors such as population density and growth, predation risk or reproduction cost have been found to influence timing of maturation. We investigated the relationship between female size at maturity and individual growth trajectories of the long-lived semelparous European eel, Anguilla anguilla . A Bayesian model was applied to 338 individual growth trajectories of maturing migration-stage female silver eels from France, Ireland, the Netherlands and Hungary. The results clearly showed that when growth rates declined, the onset of maturation was triggered, and the eels left their growth habitats and migrated to the spawning area. Therefore, female eels tended to attain larger body size when the growth conditions were good enough to risk spending extra time in their growth habitats. This flexible maturation strategy is likely related to the ability to use diverse habitats with widely ranging growth and survival potentials in the catadromous life-history across its wide species range.


1995 ◽  
Vol 269 (4) ◽  
pp. R793-R799 ◽  
Author(s):  
B. Pelster

Mechanisms of acid production and of acid release have been analyzed in isolated gas gland cells of the eel swimbladder using a cytosensor microphysiometer. Incubation of isolated cells with oxamic acid caused a dose-dependent decrease in the rate of proton release. At the highest oxamic acid concentration used (20 mmol/l), proton release was reduced by approximately 40%; incubation with sodium fluoride (10 mmol/l) or removal of glucose from the extracellular medium caused 60 and 80% reduction, respectively. NaCN had little effect on proton secretion. Proton release of isolated gas gland cells was largely dependent on the extracellular sodium concentration, and this sodium effect was in part inhibitable by amiloride. A 15-20% reduction in the rate of proton secretion was observed in the presence of 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid, an inhibitor of anion exchange. Inhibition of mammalian H(+)-K(+)-adenosinetriphosphatase with omeprazole had no effect, whereas bafilomycin, an inhibitor of vesicular H(+)-adenosinetriphosphatase, induced a 25% reduction in proton secretion. Ethoxzolamide, a membrane-permeable inhibitor of carbonic anhydrase, caused a 60% reduction in proton secretion (inhibition constant = 54.4 nmol/l). Prontosil-dextran, a membrane-impermeable sulfonamide, also reduced the proton release, thus indicating the presence of a membrane-bound carbonic anhydrase facing the extracellular space.


1995 ◽  
Vol 307 (2) ◽  
pp. 433-438 ◽  
Author(s):  
H Batliwala ◽  
T Somasundaram ◽  
E E Uzgiris ◽  
L Makowski

Human erythrocytes were exposed to high concentrations of methane and nitrogen through the application of elevated partial pressures of these gas molecules. Cell leakage (haemolysis) was measured for cells exposed to these gases under a wide range of experimental conditions. Application of methane produces haemolysis at pressures far below the hydrostatic pressures known to disrupt membrane or protein structure. The effects of changes in buffer, temperature, diffusion rate and detergents were studied. Methane acts co-operatively with detergents to produce haemolysis at much lower detergent concentration than is required in the absence of methane or in the presence of nitrogen. At sufficiently high concentrations of methane, all cells are haemolysed. Increased temperature enhances the effect. Methane produces 50% haemolysis at a concentration of about 0.33 M compared with about 7.5 M methanol required for the same degree of haemolysis.


1996 ◽  
Vol 270 (3) ◽  
pp. R578-R584
Author(s):  
B. Pelster ◽  
L. Pott

Single cells and cell clusters isolated from the swimbladder epithelium of the European eel Anguilla anguilla attached to collagen S-coated petri dishes and proliferated in a modified Dulbecco's modified Eagle's medium, supplemented with 0.5% fetal calf serum. At a temperature of 20-22 degrees C, the growing colonies reached confluence typically within 6-8 days. Activities of glycolytic and pentose phosphate shunt enzymes remained stable or increased only slightly during the first 10 days of primary culture. Incubated in a defined medium providing glucose as a fuel, gas gland cells in primary culture produced and released lactic acid. The rate of acid secretion of cultured gas gland cells measured with a cytosensor microphysiometer was not influenced by cholinergic stimulation. Similarly, the Ca2+ ionophore A-23187 had no effect. Adrenergic stimulation with epinephrine or the beta-agonist isoproterenol also did not increase the rate of acid secretion, indicating that in gas gland cells the metabolic activity cannot be stimulated via beta-adrenergic stimulation followed by an increase in adenosine 3',5'-cyclic monophosphate (cAMP). Artificially increasing the intracellular concentration of cAMP by incubation with forskolin or the cAMP analogue 8-(4-chlorophenylthio)-cAMP even resulted in a marked reduction in the rate of acid secretion. The results demonstrate that primary cell culture provides a useful means for the analysis of metabolic control and of ion transfer processes in swimbladder gas gland cells.


Sign in / Sign up

Export Citation Format

Share Document