scholarly journals Cross-talk between transcriptome, phytohormone and HD-ZIP gene family analysis illuminates the molecular mechanism underlying fruitlet abscission in sweet cherry (Prunus avium L)

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Zhilang Qiu ◽  
Zhuang Wen ◽  
Qiandong Hou ◽  
Guang Qiao ◽  
Kun Yang ◽  
...  

Abstract Background The shedding of premature sweet cherry (Prunus avium L) fruitlet has significantly impacted production, which in turn has a consequential effect on economic benefits. Result To better understand the molecular mechanism of sweet cherry fruitlet abscission, pollen viability and structure had been observed from the pollination trees. Subsequently, the morphological characters of the shedding fruitlet, the plant hormone titers of dropping carpopodium, the transcriptome of the abscising carpopodium, as well as the HD-ZIP gene family were investigated. These findings showed that the pollens giving rise to heavy fruitlet abscission were malformed in structure, and their viability was lower than the average level. The abscising fruitlet and carpopodium were characterized in red color, and embryos of abscising fruitlet were aborted, which was highly ascribed to the low pollen viability and malformation. Transcriptome analysis showed 6462 were significantly differentially expressed, of which 2456 genes were up-regulated and 4006 down-regulated in the abscising carpopodium. Among these genes, the auxin biosynthesis and signal transduction genes (α-Trp, AUX1), were down-regulated, while the 1-aminocyclopropane-1-carboxylate oxidase gene (ACO) affected in ethylene biosynthesis, was up-regulated in abscising carpopodium. About genes related to cell wall remodeling (CEL, PAL, PG EXP, XTH), were up-regulated in carpopodium abscission, which reflecting the key roles in regulating the abscission process. The results of transcriptome analysis considerably conformed with those of proteome analysis as documented previously. In comparison with those of the retention fruitlet, the auxin contents in abscising carpopodium were significantly low, which presumably increased the ethylene sensitivity of the abscission zone, conversely, the abscisic acid (ABA) accumulation was considerably higher in abscising carpopodium. Furthermore, the ratio of (TZ + IAA + GA3) / ABA also obviously lower in abscising carpopodium. Besides, the HD-ZIP gene family analysis showed that PavHB16 and PavHB18 were up-regulated in abscising organs. Conclusion Our findings combine morphology, cytology and transcriptional regulation to reveal the molecular mechanism of sweet cherry fruitlet abscission. It provides a new perspective for further study of plant organ shedding.

2020 ◽  
Author(s):  
Zhilang Qiu ◽  
Zhuang Wen ◽  
Qiandong Hou ◽  
Guang Qiao ◽  
Kun Yang ◽  
...  

Abstract Background The shedding of premature sweet cherry (Prunus avium L) fruit has significantly impacted production, which in turn has a consequential effect on economic benefits. Result To better understand the molecular mechanism of sweet cherry fruitlet abscission, pollens viability and structure had observed from the pollination trees. Subsequently, the morphological characters of shedding fruitlet, the plant hormone titers of dropping carpopodium, transcriptome of the abscising carpopodium, as well as the HD-ZIP gene family were investigated. These findings showed that the pollens giving rise to heavy fruitlet abscission were malformed in structure, and their viability was lower than the average level. The abscising fruitlet and carpopodium characterized in red color, and embryos of abscising fruitlets were aborted, which was highly ascribed to the low pollen viability and malformation. Transcriptome analysis showed 6,462 were significantly differentially expressed, of which 2,456 genes were up-regulated and 4,006 down-regulated. Among these genes, the auxin biosynthesis and signal transduction genes (α-Trp, AUX1), was down-regulated, while 1-aminocyclopropane-1-carboxylate oxidase gene (ACO) affected in ethylene biosynthesis, was up-regulated in abscising carpopodium. About genes related to cell wall remodeling (CEL, PAL, PG EXP, XTH), were up-regulated in carpopodium abscission, which reflecting the key roles in regulating the abscission process. The results of transcriptome analysis considerably conformed with those of proteome analysis as documented previously. In comparison with those of the retention fruitlet, the auxin contents in abscising carpopodium were significantly low, which presumably increased the ethylene sensitivity of the abscission zone, conversely, the abscisic acid (ABA) accumulation was considerably higher in abscising carpopodium. Furthermore, the ratio of (TZ + IAA + GA3) / ABA also obviously lower in abscising carpopodium. Besides, the HD-ZIP gene family analysis showed that PavHB16 and PavHB18 were up-regulated in abscising organs. Conclusion Our findings combine morphology, cytology and transcriptional regulation to reveal the molecular mechanism of sweet cherry fruitlet abscission. It provides a new perspective for further study of plant organ shedding.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Roberto Berni ◽  
Emilie Piasecki ◽  
Sylvain Legay ◽  
Jean-Francois Hausman ◽  
Khawar Sohail Siddiqui ◽  
...  

2021 ◽  
Vol 22 (21) ◽  
pp. 11968
Author(s):  
Qiandong Hou ◽  
Zhilang Qiu ◽  
Zhuang Wen ◽  
Huimin Zhang ◽  
Zhengchun Li ◽  
...  

Auxin response factors (ARFs) play a vital role in plant growth and development. In the current study, 16 ARF members have been identified in the sweet cherry (Prunus avium L.) genome. These genes are all located in the nucleus. Sequence analysis showed that genes in the same subgroup have similar exon-intron structures. A phylogenetic tree has been divided into five groups. The promoter sequence includes six kinds of plant hormone-related elements, as well as abiotic stress response elements such as low temperature or drought. The expression patterns of PavARF in different tissues, fruitlet abscission, cold and drought treatment were comprehensively analyzed. PavARF10/13 was up-regulated and PavARF4/7/11/12/15 was down-regulated in fruitlet abscising. These genes may be involved in the regulation of fruit drop in sweet cherry fruits. This study comprehensively analyzed the bioinformatics and expression pattern of PavARF, which can lay the foundation for further understanding the PavARF family in plant growth development and fruit abscission.


Horticulturae ◽  
2021 ◽  
Vol 7 (9) ◽  
pp. 270
Author(s):  
Seanna Hewitt ◽  
Benjamin Kilian ◽  
Tyson Koepke ◽  
Jonathan Abarca ◽  
Matthew Whiting ◽  
...  

The harvesting of sweet cherry (Prunus avium L.) fruit is a labor-intensive process. The mechanical harvesting of sweet cherry fruit is feasible; however, it is dependent on the formation of an abscission zone at the fruit–pedicel junction. The natural propensity for pedicel-–fruit abscission zone (PFAZ) activation varies by cultivar, and the general molecular basis for PFAZ activation is not well characterized. In this study, ethylene-inducible change in pedicel fruit retention force (PFRF) was recorded in a developmental time-course with a concomitant analysis of the PFAZ transcriptome from three sweet cherry cultivars. In ‘Skeena’, mean PFRF for both control and treatment fruit dropped below the 0.40 kg-force (3.92 N) threshold for mechanical harvesting, indicating the activation of a discrete PFAZ. In ‘Bing’, mean PFRF for both control and treatment groups decreased over time. However, a mean PFRF conducive to mechanical harvesting was achieved only in the ethylene-treated fruit. While in ‘Chelan’ the mean PFRF of the control and treatment groups did not meet the threshold required for efficient mechanical harvesting. Transcriptome analysis of the PFAZ region followed by the functional annotation, differential expression analysis, and gene ontology (GO) enrichment analyses of the data facilitated the identification of phytohormone-responsive and abscission-related transcripts, as well as processes that exhibited differential expression and enrichment in a cultivar-dependent manner over the developmental time-course. Additionally, read alignment-based variant calling revealed several short variants in differentially expressed genes, associated with enriched gene ontologies and associated metabolic processes, lending potential insight into the genetic basis for different abscission responses between the cultivars. These results provide genetic targets for the induction or inhibition of PFAZ activation, depending on the desire to harvest the fruit with or without the stem attached. Understanding the genetic mechanisms underlying the development of the PFAZ will inform future cultivar development while laying a foundation for mechanized sweet cherry harvest.


2021 ◽  
Author(s):  
Irfan Ali Sabir ◽  
Muhammad Aamir Manzoor ◽  
Iftikhar Hussain Shah ◽  
Xunju Liu ◽  
Muhmmad Salman Zahid ◽  
...  

Abstract Back groundMYB Transcription factors (TFs) are most imperative and largest gene family in plants, which participate in development, metabolism, defense, differentiation and stress response. The MYB TFs has been studied in various plant species. However, comprehensive studies of MYB gene family in the sweet cherry (Prunus avium L.) are still unknown. ResultsIn the current study, a total of 69 MYB genes were investigated from sweet cherry genome and classified into 28 subfamilies (C1-C28 based on phylogenetic and structural analysis). Microcollinearity analysis revealed that dispersed duplication (DSD) and whole-genome duplication (WGD) events might play an important role in the expansion of the MYB genes family. Chromosomal localization, the synonymous (Ks) and nonsynonymous (Ka) analysis, molecular characteristics (pI, weight and length of amino acids) and subcellular localization were accomplished using several bioinformatics tools. Moreover, different subfamilies contained different cis-acting elements, conserved motifs analysis and introns-exons structures, representing functional divergence in the MYB family. Subsequently, the transcriptomic data exposed that MYB genes might play vital role in bud dormancy. Subsequently, the quantitative real-time qRT-PCR was carried out and the expression pattern indicated that MYB genes significantly expressed in floral bud as compared to flower and fruit. ConclusionOur comprehensive findings provide supportive insights into the evolutions, expansion complexity and functionality of PavMYB genes. These PavMYB genes should be further investigated as they seem to be brilliant candidates for dormancy manipulation in sweet cherry.


2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Irfan Ali Sabir ◽  
Muhammad Aamir Manzoor ◽  
Iftikhar Hussain Shah ◽  
Xunju Liu ◽  
Muhmmad Salman Zahid ◽  
...  

Abstract Back ground MYB Transcription factors (TFs) are most imperative and largest gene family in plants, which participate in development, metabolism, defense, differentiation and stress response. The MYB TFs has been studied in various plant species. However, comprehensive studies of MYB gene family in the sweet cherry (Prunus avium L.) are still unknown. Results In the current study, a total of 69 MYB genes were investigated from sweet cherry genome and classified into 28 subfamilies (C1-C28 based on phylogenetic and structural analysis). Microcollinearity analysis revealed that dispersed duplication (DSD) events might play an important role in the MYB genes family expansion. Chromosomal localization, the synonymous (Ks) and nonsynonymous (Ka) analysis, molecular characteristics (pI, weight and length of amino acids) and subcellular localization were accomplished using several bioinformatics tools. Furthermore, the members of distinct subfamilies have diverse cis-acting regions, conserved motifs, and intron-exon architectures, indicating functional heterogeneity in the MYB family. Moreover, the transcriptomic data exposed that MYB genes might play vital role in bud dormancy. The quantitative real-time qRT-PCR was carried out and the expression pattern indicated that MYB genes significantly expressed in floral bud as compared to flower and fruit. Conclusion Our comprehensive findings provide supportive insights into the evolutions, expansion complexity and functionality of PavMYB genes. These PavMYB genes should be further investigated as they seem to be brilliant candidates for dormancy manipulation in sweet cherry.


HortScience ◽  
2020 ◽  
Vol 55 (2) ◽  
pp. 258-260
Author(s):  
Akide Özcan

The objective of this study was to analyze the effects of low storage temperatures on the quality of pollen obtained from the sweet cherry cultivars 0900 Ziraat, Regina, Starks Gold, and Sweet Heart. The pollen was stored at 4 °C, –20 °C, and –80 °C for 12 months, and its viability and germinability were determined at 3-month intervals. The results demonstrated that the initial pollen viability varied between 73.62% and 79.37%, while pollen germinability varied between 41.24% and 53.56%. The percentage of pollen viability declined remarkably from the third to 12th month by almost 3% in 4 °C storage. The pollen viability for the other two storage temperatures (–20 °C and –80 °C) was greater than 50% by the end of the 12th month. It can be concluded that the pollen quality of these cultivars can be preserved sufficiently at temperatures less than –20 °C.


2020 ◽  
Vol 21 (4) ◽  
pp. 1200
Author(s):  
Zhi-Lang Qiu ◽  
Zhuang Wen ◽  
Kun Yang ◽  
Tian Tian ◽  
Guang Qiao ◽  
...  

Sweet cherry (Prunus avium L.) is a delicious nutrient-rich fruit widely cultivated in countries such as China, America, Chile, and Italy. However, the yield often drops severely due to the frequently-abnormal fruitlet abscission, and few studies on the metabolism during its ripening process at the proteomic level have been executed so far. To get a better understanding regarding the sweet cherry abscission mechanism, proteomic analysis between the abscising carpopodium and non-abscising carpopodium of sweet cherry was accomplished using a newly developed Liquid chromatography-mass spectrometry/mass spectrometry with Tandem Mass Tag (TMT-LC-MS/MS) methodology. The embryo viability experiments showed that the vigor of the abscission embryos was significantly lower than that of retention embryo. The activity of cell wall degrading enzymes in abscising carpopodium was significantly higher than that in non-abscising carpopodium. The anatomy results suggested that cells in the abscission zone were small and separated. In total, 6280 proteins were identified, among which 5681 were quantified. It has been observed that differentially accumulated proteins (DAPs) influenced several biological functions and various subcellular localizations. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that plenty of metabolic pathways were notably enriched, particularly those involved in phytohormone biosynthesis, cell wall metabolism, and cytoskeletal metabolism, including 1-aminocyclopropane-1-carboxylate oxidase proteins which promote ethylene synthesis, and proteins promoting cell wall degradation, such as endoglucanases, pectinase, and polygalacturonase. Differential expression of proteins concerning phytohormone biosynthesis might activate the shedding regulation signals. Up-regulation of several cell wall degradation-related proteins possibly regulated the shedding of plant organs. Variations of the phytohormone biosynthesis and cell wall degradation-related proteins were explored during the abscission process. Furthermore, changes in cytoskeleton-associated proteins might contribute to the abscission of carpopodium. The current work represented the first study using comparative proteomics between abscising carpopodium and non-abscising carpopodium. These results indicated that embryo abortion might lead to phytohormone synthesis disorder, which effected signal transduction pathways, and hereby controlled genes involved in cell wall degradation and then caused the abscission of fruitlet. Overall, our data may give an intrinsic explanation of the variations in metabolism during the abscission of carpopodium.


1971 ◽  
Vol 49 (4) ◽  
pp. 623-630
Author(s):  
Ernest D. Whelan ◽  
C. A. Hornby

Meiosis, pollen viability, and growth changes were investigated in two of six radiation-induced reciprocal translocation mutants of Lambert sweet cherry (Prunus avium L.).Meiosis in mutant 19-23-1CL was characterized by a quadrivalent which was evident from pachynema to metaphase I. A circle-4 configuration normally was observed, and alternate and adjacent configurations occurred with equal frequency. Pollen stainability tests indicated 28% normal pollen, as compared to 58% for the parental Lambert clone. Changes in growth habit were evident, the onset of meiosis and flowering were delayed, and only 2% of the blossoms set fruit. Any fruit retained was poor in color, noticeably pointed, and had a prominent longitudinal dorsal ridge.Meiosis in mutant 16-4E was more complex than in 19-23-1CL. Quadrivalents rarely were observed, and most meiocytes contained a trivalent and a centric fragment, or a univalent and centric fragment. Meiotic abnormalities associated with these defects frequently were evident throughout meiosis. Pollen stainability tests indicated about 34% normal pollen. No marked changes in growth habit, onset of meiosis or flowering were evident. Fruit drop was about four times that of normal Lambert. Fruit retained appeared normal.


Sign in / Sign up

Export Citation Format

Share Document