scholarly journals Comparative transcriptome analysis reveals regulatory network and regulators associated with proanthocyanidin accumulation in persimmon

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Qingyou Zheng ◽  
Wenxing Chen ◽  
Man Luo ◽  
Liqing Xu ◽  
Qinglin Zhang ◽  
...  

Abstract Background Proanthocyanidins (PAs) are important plant secondary metabolites that confer flavor, nutritional value, and resistance to pathogens. Persimmon is one of the PA richest crops. Mature fruits can be inedible because of the astringency caused by high PA levels and need to go through a de-astringency treatment before consumption. The molecular basis for PA accumulation is poorly known, particularly transcriptional regulators. We characterised three genotypes (‘Luotiantianshi’ (LT), ‘Mopanshi’ (MP), and ‘Youhou’ (YH)) with different PA accumulation patterns using an approach that combined PacBio full-length sequencing and Illumina-based RNA sequencing to build high-quality full-length transcriptomes. Additionally, we analysed transcriptome dynamics of the three genotypes (LT, MP, and YH) at four key fruit developmental stages. Results A total of 96,463 transcripts were obtained. We identified 80,075 protein-coding sequences (CDSs), 71,137 simple sequence repeats (SSRs), and 27,845 long noncoding RNAs (lncRNAs). Pearson correlation coefficient (PCC), principal component analysis (PCA), and differentially expressed transcripts (DETs) analyses indicated that the four different developmental stages within a genotype exhibited similar transcriptome activities. A total of 2,164 transcripts specific to each fruit developmental stage were detected. The transcripts specific to early stages were attributed to phenylpropanoid and flavonoid biosynthesis. Co-expression network analyses revealed MEbrown and MEblue modules were strongly associated to PA accumulation. From these two modules, 20 hub TFs are potential regulators for PA accumulation. Among them, Cluster_78388 (SBP protein), Cluster_63454 (bZIP protein), and Cluster_66595 (MYB protein) appear to involve in the PA biosynthesis in Chinese genotypes. Conclusions This is the first high-quality reference transcriptome for commercial persimmon. Our work provides insights into the molecular pathways underlying PA accumulation and enhances our global understanding of transcriptome dynamics throughout fruit development.

Author(s):  
Liang Xu ◽  
Shengnan Li ◽  
Yanyun Yang ◽  
Yanping Xing ◽  
Zhongren Zhang ◽  
...  

Arctium lappa has a long medicinal and edible history with great economic importance. We combined Illumina and PacBio sequences to generate the first high-quality chromosome-level draft genome of A. lappa. The assembled genome is approximately 1.79 Gb with a N50 contig size of 6.88 Mb. Approximately 1.70 Gb (95.4%) of the contig sequences were anchored onto 18 chromosomes using Hi-C data; the scaffold N50 was improved to be 91.64 Mb. Furthermore, we obtained 1.12 Gb (68.46%) of repetitive sequences and 32,771 protein-coding genes; 616 positively selected candidate genes were identified. Additionally, we compared the transcriptomes of A. lappa roots at three different developmental stages and identified 8,943 differentially expressed genes (DEGs) in these tissues. Among candidate genes related to lignan biosynthesis, the following were found to be highly correlated with the accumulation of arctiin: 4-coumarate-CoA ligase (4CL), dirigent protein (DIR), and hydroxycinnamoyl transferase (HCT). These data can be utilized to identify genes related to A. lappa quality or provide a basis for molecular identification and comparative genomics among related species.


2020 ◽  
Vol 10 (10) ◽  
pp. 3505-3514
Author(s):  
Hongmei Zhuang ◽  
Qiang Wang ◽  
Hongwei Han ◽  
Huifang Liu ◽  
Hao Wang

To generate the full-length transcriptome of Xinjiang green and purple turnips, Brassica rapa var. Rapa, using single-molecule real-time (SMRT) sequencing. The samples of two varieties of Brassica rapa var. Rapa at five developmental stages were collected and combined to perform SMRT sequencing. Meanwhile, next generation sequencing was performed to correct SMRT sequencing data. A series of analyses were performed to investigate the transcript structure. Finally, the obtained transcripts were mapped to the genome of Brassica rapa ssp. pekinesis Chiifu to identify potential novel transcripts. For green turnip (F01), a total of 19.54 Gb clean data were obtained from 8 cells. The number of reads of insert (ROI) and full-length non-chimeric (FLNC) reads were 510,137 and 267,666. In addition, 82,640 consensus isoforms were obtained in the isoform sequences clustering, of which 69,480 were high-quality, and 13,160 low-quality sequences were corrected using Illumina RNA seq data. For purple turnip (F02), there were 20.41 Gb clean data, 552,829 ROIs, and 274,915 FLNC sequences. A total of 93,775 consensus isoforms were obtained, of which 78,798 were high-quality, and the 14,977 low-quality sequences were corrected. Following the removal of redundant sequences, there were 46,516 and 49,429 non-redundant transcripts for F01 and F02, respectively; 7,774 and 9,385 alternative splicing events were predicted for F01 and F02; 63,890 simple sequence repeats, 59,460 complete coding sequences, and 535 long-non coding RNAs were predicted. Moreover, 5,194 and 5,369 novel transcripts were identified by mapping to Brassica rapa ssp. pekinesis Chiifu. The obtained transcriptome data may improve turnip genome annotation and facilitate further study of the Brassica rapa var. Rapa genome and transcriptome.


Viruses ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1790
Author(s):  
Xuhua Xia

All dating studies involving SARS-CoV-2 are problematic. Previous studies have dated the most recent common ancestor (MRCA) between SARS-CoV-2 and its close relatives from bats and pangolins. However, the evolutionary rate thus derived is expected to differ from the rate estimated from sequence divergence of SARS-CoV-2 lineages. Here, I present dating results for the first time from a large phylogenetic tree with 86,582 high-quality full-length SARS-CoV-2 genomes. The tree contains 83,688 genomes with full specification of collection time. Such a large tree spanning a period of about 1.5 years offers an excellent opportunity for dating the MRCA of the sampled SARS-CoV-2 genomes. The MRCA is dated 16 August 2019, with the evolutionary rate estimated to be 0.05526 mutations/genome/day. The Pearson correlation coefficient (r) between the root-to-tip distance (D) and the collection time (T) is 0.86295. The NCBI tree also includes 10 SARS-CoV-2 genomes isolated from cats, collected over roughly the same time span as human COVID-19 infection. The MRCA from these cat-derived SARS-CoV-2 is dated 30 July 2019, with r = 0.98464. While the dating method is well known, I have included detailed illustrations so that anyone can repeat the analysis and obtain the same dating results. With 16 August 2019 as the date of the MRCA of sampled SARS-CoV-2 genomes, archived samples from respiratory or digestive tracts collected around or before 16 August 2019, or those that are not descendants of the existing SARS-CoV-2 lineages, should be particularly valuable for tracing the origin of SARS-CoV-2.


2019 ◽  
Author(s):  
Yinghui Dong ◽  
Qifan Zeng ◽  
Jianfeng Ren ◽  
Hanhan Yao ◽  
Wenbin Ruan ◽  
...  

AbstractBackgroundThe Chinese razor clam, Sinonovacula constricta, is one of the commercially important marine bivalves with deep-burrowing lifestyle and remarkable adaptability of broad-range salinity. Despite its economic impact and representative of the less-understood deep-burrowing bivalve lifestyle, there are few genomic resources for exploring its unique biology and adaptive evolution. Herein, we reported a high-quality chromosomal-level reference genome of S. constricta, the first genome of the family Solenidae, along with a large amount of short-read/full-length transcriptomic data of whole-ontogeny developmental stages, all major adult tissues, and gill tissues under salinity challenge.FindingsA total of 101.79 Gb and 129.73 Gb sequencing data were obtained with the PacBio and Illumina platforms, which represented approximately 186.63X genome coverage. In addition, a total of 160.90 Gb and 24.55 Gb clean data were also obtained with the Illumina and PacBio platforms for transcriptomic investigation. A de novo genome assembly of 1,340.13 Mb was generated, with a contig N50 of 689.18 kb. Hi-C scaffolding resulted in 19 chromosomes with a scaffold N50 of 57.99 Mb. The repeat sequences account for 50.71% of the assembled genome. A total of 26,273 protein-coding genes were predicted and 99.5% of them were annotated. Phylogenetic analysis revealed that S. constricta diverged from the lineage of Pteriomorphia at approximately 494 million years ago. Notably, cytoskeletal protein tubulin and motor protein dynein gene families are rapidly expanded in the S. constricta genome and are highly expressed in the mantle and gill, implicating potential genomic bases for the well-developed ciliary system in the S. constricta.ConclusionsThe high-quality genome assembly and comprehensive transcriptomes generated in this work not only provides highly valuable genomic resources for future studies of S. constricta, but also lays a solid foundation for further investigation into the adaptive mechanisms of benthic burrowing mollusks.


2020 ◽  
Author(s):  
Yanyan Wu ◽  
Qinglan Tian ◽  
Weihua Huang ◽  
Jieyun Liu ◽  
Xiuzhong Xia ◽  
...  

AbstractInformation of the Passiflora genome is still very limited. Understand the evolutionary relationship between different species of Passiflora, and develop a large number of SSR markers to provide a basis for the genetic improvement of Passiflora. Applying restriction site associated DNA sequencing (RAD-Seq) technology, we studied the phylogeny, simple sequence repeat (SSR) and marker transferability of 10 accessions of 6 species of Passiflora. Taking the partial assembly sequence of accessions P4 as the reference genome, we constructed the phylogenetic tree using the detected 46,451 high-quality single nucleotide polymorphisms (SNPs), showing that P6, P7, P8 and P9 were a single one while P5 and P10 were clustered together, and P1, P2, P3 and P4 were closer in genetic relationship. Using P8 as the reference genome, a total of 12,452 high-quality SNPs were used to construct phylogenetic tree. P3, P4, P7, P8, P9 and P10 were all single branch while P1 and P2 were clustered together, and P5 and P6 were clustered into one branch. A principal component analysis (PCA) revealed a similar population structure, which four cultivated passion fruits forming a tight cluster. A total of 2,614 SSRs were identified in the genome of 10 Passiflora accessions. The core motifs were AT, GA, AAG etc., 2-6 bases, 4-16 repeats, and 2,515 pairs of SSR primer were successfully developed. Tthe SSR transferability in cultivated passion fruits is the best. These results will contribute to the study of genomics and molecular genetics in passion fruit.


Marine Drugs ◽  
2021 ◽  
Vol 19 (7) ◽  
pp. 392
Author(s):  
Haomiao Cheng ◽  
Chris Bowler ◽  
Xiaohui Xing ◽  
Vincent Bulone ◽  
Zhanru Shao ◽  
...  

β-Chitin produced by diatoms is expected to have significant economic and ecological value due to its structure, which consists of parallel chains of chitin, its properties and the high abundance of diatoms. Nevertheless, few studies have functionally characterised chitin-related genes in diatoms owing to the lack of omics-based information. In this study, we first compared the chitin content of three representative Thalassiosira species. Cell wall glycosidic linkage analysis and chitin/chitosan staining assays showed that Thalassiosira weissflogii was an appropriate candidate chitin producer. A full-length (FL) transcriptome of T. weissflogii was obtained via PacBio sequencing. In total, the FL transcriptome comprised 23,362 annotated unigenes, 710 long non-coding RNAs (lncRNAs), 363 transcription factors (TFs), 3113 alternative splicing (AS) events and 3295 simple sequence repeats (SSRs). More specifically, 234 genes related to chitin metabolism were identified and the complete biosynthetic pathways of chitin and chitosan were explored. The information presented here will facilitate T. weissflogii molecular research and the exploitation of β-chitin-derived high-value enzymes and products.


Author(s):  
Prabhash Kumar Jha ◽  
Aatira Vijay ◽  
Amit Prabhakar ◽  
Tathagata Chatterjee ◽  
Velu Nair ◽  
...  

Background: The pathophysiology of Deep vein thrombosis (DVT) is considered as multifactorial, where thrombus formation is interplay of genetic and acquired risk factors. A little is known about the expression profile and roles of lncRNAs in human subjects developing DVT at high altitude. Methods: Using RNAseq, we compared peripheral blood mRNA and lncRNA expression profile in human High Altitude deep Vein Thrombosis (HA-DVT) patients with high altitude control subjects. We used DESeq to identify differentially expressed (DE) genes. We annotated the long noncoding RNAs using NONCODE 3.0 database. In silico putative lncRNA-miRNA association study unravels the endogenous miRNA sponge associated with our candidate lncRNAs. These findings were validated by siRNA knockdown assay of the candidate lncRNAs conducted in primary endothelial cells. Results: We identified 1524 DE mRNA and 973 DE lncRNAs. Co-expressed protein-coding genes analysis resulted in a list of 722 coexpressed protein-coding genes with a Pearson correlation coefficients >0.7. The functional annotation of co-expressed genes and putative proteins revealed their involvement in the hypoxia, immune response and coagulation cascade. Through its miRNA response elements (MREs) to compete for miR-143 and miR-15, lncRNA-LINC00659 and UXT-AS1 regulates the expression of prothrombotic genes. Furthermore, in vitro RNA interference (siRNA) simultaneously suppressed lncRNAs and target gene mRNA level. Conclusions: This transcriptome profile describes novel potential mechanisms of interaction between lncRNAs, the coding genes, miRNAs and regulatory transcription factors that define the thrombotic signature and may be used in establishing lncRNAs as biomarker in HA-DVT.


Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1517
Author(s):  
Se-Hwan Cheon ◽  
Min-Ah Woo ◽  
Sangjin Jo ◽  
Young-Kee Kim ◽  
Ki-Joong Kim

The genus Zoysia Willd. (Chloridoideae) is widely distributed from the temperate regions of Northeast Asia—including China, Japan, and Korea—to the tropical regions of Southeast Asia. Among these, four species—Zoysia japonica Steud., Zoysia sinica Hance, Zoysia tenuifolia Thiele, and Zoysia macrostachya Franch. & Sav.—are naturally distributed in the Korean Peninsula. In this study, we report the complete plastome sequences of these Korean Zoysia species (NCBI acc. nos. MF953592, MF967579~MF967581). The length of Zoysia plastomes ranges from 135,854 to 135,904 bp, and the plastomes have a typical quadripartite structure, which consists of a pair of inverted repeat regions (20,962~20,966 bp) separated by a large (81,348~81,392 bp) and a small (12,582~12,586 bp) single-copy region. In terms of gene order and structure, Zoysia plastomes are similar to the typical plastomes of Poaceae. The plastomes encode 110 genes, of which 76 are protein-coding genes, 30 are tRNA genes, and four are rRNA genes. Fourteen genes contain single introns and one gene has two introns. Three evolutionary hotspot spacer regions—atpB~rbcL, rps16~rps3, and rpl32~trnL-UAG—were recognized among six analyzed Zoysia species. The high divergences in the atpB~rbcL spacer and rpl16~rpl3 region are primarily due to the differences in base substitutions and indels. In contrast, the high divergence between rpl32~trnL-UAG spacers is due to a small inversion with a pair of 22 bp stem and an 11 bp loop. Simple sequence repeats (SSRs) were identified in 59 different locations in Z. japonica, 63 in Z. sinica, 62 in Z. macrostachya, and 63 in Z. tenuifolia plastomes. Phylogenetic analysis showed that the Zoysia (Zoysiinae) forms a monophyletic group, which is sister to Sporobolus (Sporobolinae), with 100% bootstrap support. Within the Zoysia clade, the relationship of (Z. sinica, Z japonica), (Z. tenuifolia, Z. matrella), (Z. macrostachya, Z. macrantha) was suggested.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
María Isabel Iñiguez-Luna ◽  
Jorge Cadena-Iñiguez ◽  
Ramón Marcos Soto-Hernández ◽  
Francisco Javier Morales-Flores ◽  
Moisés Cortes-Cruz ◽  
...  

AbstractBioprospecting identifies new sources of compounds with actual or potential economic value that come from biodiversity. An analysis was performed regarding bioprospecting purposes in ten genotypes of Sechium spp., through a meta-analysis of 20 information sources considering different variables: five morphological, 19 biochemical, anti-proliferative activity of extracts on five malignant cell lines, and 188 polymorphic bands of amplified fragment length polymorphisms, were used in order to identify the most relevant variables for the design of genetic interbreeding. Significant relationships between morphological and biochemical characters and anti-proliferative activity in cell lines were obtained, with five principal components for principal component analysis (SAS/ETS); variables were identified with a statistical significance (< 0.7 and Pearson values ≥ 0.7), with 80.81% of the accumulation of genetic variation and 110 genetic bands. Thirty-nine (39) variables were recovered using NTSYSpc software where 30 showed a Pearson correlation (> 0.5) and nine variables (< 0.05), Finally, using a cladistics analysis approach highlighted 65 genetic bands, in addition to color of the fruit, presence of thorns, bitter flavor, piriform and oblong shape, and also content of chlorophylls a and b, presence of cucurbitacins, and the IC50 effect of chayote extracts on the four cell lines.


2021 ◽  
Vol 13 (12) ◽  
pp. 6910
Author(s):  
Adil Dilawar ◽  
Baozhang Chen ◽  
Arfan Arshad ◽  
Lifeng Guo ◽  
Muhammad Irfan Ehsan ◽  
...  

Here, we provided a comprehensive analysis of long-term drought and climate extreme patterns in the agro ecological zones (AEZs) of Pakistan during 1980–2019. Drought trends were investigated using the standardized precipitation evapotranspiration index (SPEI) at various timescales (SPEI-1, SPEI-3, SPEI-6, and SPEI-12). The results showed that droughts (seasonal and annual) were more persistent and severe in the southern, southwestern, southeastern, and central parts of the region. Drought exacerbated with slopes of −0.02, −0.07, −0.08, −0.01, and −0.02 per year. Drought prevailed in all AEZs in the spring season. The majority of AEZs in Pakistan’s southern, middle, and southwestern regions had experienced substantial warming. The mean annual temperature minimum (Tmin) increased faster than the mean annual temperature maximum (Tmax) in all zones. Precipitation decreased in the southern, northern, central, and southwestern parts of the region. Principal component analysis (PCA) revealed a robust increase in temperature extremes with a variance of 76% and a decrease in precipitation extremes with a variance of 91% in the region. Temperature and precipitation extremes indices had a strong Pearson correlation with drought events. Higher temperatures resulted in extreme drought (dry conditions), while higher precipitation levels resulted in wetting conditions (no drought) in different AEZs. In most AEZs, drought occurrences were more responsive to precipitation. The current findings are helpful for climate mitigation strategies and specific zonal efforts are needed to alleviate the environmental and societal impacts of drought.


Sign in / Sign up

Export Citation Format

Share Document