scholarly journals Highly proliferative anal neuroendocrine carcinoma: molecular and clinical features of a rare, recurrent case in complete remission

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Carl Christofer Juhlin ◽  
Henrik Falhammar ◽  
Magnus Kjellman ◽  
Jan Åhlén ◽  
Staffan Welin ◽  
...  

Abstract Background Poorly differentiated anal neuroendocrine carcinomas (ANECs) are rare lesions with poor prognosis, and the molecular etiology is only partially understood. Case presentation At our institution, we have treated and followed a patient with such a rare ANEC. He had primarily surgery followed by three rounds of repeated surgery for loco-regional recurrences. He also received three different combinations of chemotherapy and external beam radiation. At last follow-up 13 years since the primary diagnosis, the patient had been in complete remission for nine years. The patient’s medical files were re-examined, including laboratory, radiology and clinical examinations. Histopathology was re-assessed, and expanded immunohistochemistry was performed from tissue specimens from the four surgical procedures. In addition, the molecular genetic status was evaluated through next-generation sequencing. The initial tumor was consistent with a 59 mm small cell neuroendocrine cancer with a Ki-67 index of 80%. Regional lymph node metastases were evident, and immunohistochemistry supported a neuroendocrine origin. A PCR screening detected human papilloma virus type 45 DNA (high-risk subtype), and focused next-generation sequencing found a missense mutation in the Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic Subunit Alpha (PIK3CA) gene. In tissues representing subsequent recurrences, the Chromogranin A expression was lost, and the Ki-67 index increased to 90%. Conclusions For the first time, we report the detection of HPV45 in a case of ANEC. To our belief, PIK3CA mutations have also not been previously demonstrated in this tumor entity. In highly malignant ANECs, cure can in rare cases be achieved. Although speculative, expression of HPV45 and/or the PIK3CA mutation may have contributed to the favorable outcome.

2021 ◽  
pp. 62-69
Author(s):  
Tsubasa Yoshida ◽  
Yohei Kojima ◽  
Ryusuke Shimada ◽  
Hidesato Tanabe ◽  
Koichi Tabei ◽  
...  

Duodenal tumors with a sporadic adenoma-carcinoma sequence are extremely rare. For such clinically suspected cases without a specific family history, performing a comprehensive gene search is important to understand the germline mutation background. We present a 68-year-old woman without a genetic or familial history of familial adenomatous polyposis (FAP), Peutz-Jeghers syndrome, or Lynch syndrome who presented to Kosei Hospital, Japan, with exertional dyspnea induced by abdominal pain lasting 3 weeks. A duodenal tumor was suspected by contrast-enhanced computed tomography. Esophagogastroduodenoscopy showed a lesion accompanied by a white microprotuberance on the descending part of the duodenum opposite the papilla, with a giant ulcerative lesion at the center of the white lesion. Biopsy revealed a low-grade adenoma, high-grade adenoma, and adenocarcinoma. Immunohistochemical analysis of the adenoma and adenocarcinoma showed Ki-67, p53, cytokeratin 20, caudal-type homeobox 2, and carcinoembryonic antigen positivity and cytokeratin 7 negativity. The findings suggested the presence of an adenoma-adenocarcinoma sequence in duodenal carcinoma. However, in the mutational analysis using next-generation sequencing, c.4348C>T (p.Arg1450Ter) mutation in APC was detected in all normal mucosal, adenoma, and carcinoma tissues. This mutation is common in FAP patients. Even if the presence of an adenoma-adenocarcinoma sequence in duodenal carcinoma is suggested in cases without a familial FAP history, as in this case, genetic analysis may reveal FAP. Thus, performing a comprehensive genetic analysis of duodenal carcinoma patients with a possible adenoma-carcinoma sequence is necessary to explore their genetic background.


Diagnostics ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1241
Author(s):  
Agathe Boudet ◽  
Robin Stephan ◽  
Sophie Bravo ◽  
Milène Sasso ◽  
Jean-Philippe Lavigne

Since January 2021, the diffusion of the most propagated SARS-CoV-2 variants in France (UK variant 20I/501Y.V1 (lineage B.1.1.7), 20H/H501Y.V2 (lineage B.1.351) and 20J/H501Y.V3 (lineage P.1)) were urgently screened, needing a surveillance with an RT-PCR screening assay. In this study, we evaluated one RT-PCR kit for this screening (ID SARS-CoV-2/UK/SA Variant Triplex®, ID Solutions, Grabels, France) on 2207 nasopharyngeal samples that were positive for SARS-CoV-2. Using ID Solutions kit, 4.1% (92/2207) of samples were suspected to belonged to B.1.351 or P.1 variants. Next-generation sequencing that was performed on 67.4% (62/92) of these samples confirmed the presence of a B.1.351 variant in only 75.8% of the samples (47/62). Thirteen samples belonged to the UK variant (B.1.1.7), and two to A.27 with N501Y mutation. The thirteen with the UK variant presented one mutation in the S-gene, near the ΔH69/ΔV70 deletion (S71F or A67S), which impacted the detection of ΔH69/ΔV70 deletion. Using another screening kit (PKampVariantDetect SARS-CoV-2 RT-PCR combination 1 and 3® PerkinElmer, Waltham, MA, USA) on the misidentified samples, we observed that the two mutations, S71F or A67S, did not impact the detection of the UK variant. In conclusion, this study highlights the limitations of the screening strategy based on the detection of few mutations/deletions as well as it not being able to follow the virus evolution.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1329-1329
Author(s):  
Bhavana Bhatnagar ◽  
Shelley Orwick ◽  
Nyla A. Heerema ◽  
Alison R. Walker ◽  
Alice S. Mims ◽  
...  

Introduction: NPM1 gene mutations are a common molecular aberration in acute myeloid leukemia (AML). In the absence of concurrent high FLT3-ITD ratio mutations (>0.5), NPM1 mutations typically associate with higher complete remission (CR) rates following intensive induction chemotherapy. NPM1 mutations have been shown to be stable markers of persistent disease or impending relapse during CR or complete remission with incomplete count recovery (CRi). Given the clinical implications that persistent NPM1 mutations can have during CR/CRi, we used Deep Amplicon sequencing on CR/CRi bone marrow (BM) samples collected from adult de novoNPM1-mutated AML patients to determine the ability of NPM1 mutations at both a high and lower sensitivity next generation sequencing methods and also the presence of additional clonal abnormalities on relapse risk. Methods: We performed targeted next generation sequencing (NGS) analysis in addition to NPM1 Deep Amplicon sequencing on paired BM or blood samples collected from 38 newly diagnosed NPM1-mutated AML patients during CR/CRi after successful induction (1-2 courses of 7 + 3) and, if available, at relapse. NPM1 mutated NGS libraries were prepared using a KAPA HyperPlus Kit (Roche, Pleasanton, CA) and xGen Lockdown Probes (IDT, Coralville, IA). Libraries were sequenced using the Illumina HiSeq 4000 (Illumina, San Diego, CA). GATK's MuTect2 was used to perform variant calling. Variant allele frequency (VAF) cut-off for the NGS panel was 0.05 (5%) with the exception of hotspot variants in IDH1 (R132) and IDH2 (R140) where variants detected to a level of 0.01 (1%) were included. The VAF cut off used for NPM1 Deep Amplicon sequencing was 0.00012 (0.012%). Results: Targeted NGS analysis and NPM1 Deep Amplicon sequencing had exceptional concordance at the level of detection of VAF= 0.05 (Figure 1). Of 38 patients, 23 patients had undetectable NPM1 mutations as analyzed through NPM1 Deep Amplicon sequencing of whom 9 (38.1%) relapsed. In contrast, 15 patients were positive by NPM1 Deep Amplicon sequencing and 9 (60%) relapsed. Only 4 patients had detectable persistent NPM1 mutations after induction according to both detection techniques and two of these relapsed. We next examined the potential impact of clearing both NPM1 mutation and co-occurring mutations together on relapses (Figure 2). A total of 15 patients cleared all of their clonal abnormalities and 5 (27%) relapsed. In contrast, of the 23 patients who did not clear the NPM1 mutation and/or another co-occurring mutation at remission, 14 (61%) have relapsed. Eleven of the relapsed patients had relapse samples available of whom all had persistent NPM1 mutation at this time. Paired CR/CRi and relapsed samples showed acquisition or recurrence of several other mutations, most notably FLT3-ITD, IDH1, and IDH2 which are all targetable with small molecule therapeutics. Conclusions: The use of Deep Amplicon sequencing to identify NPM1 mutations at a lower detection threshold compared to standard NGS techniques was more sensitive, but did not appear to fully inform relapse rates in NPM1-mutated AML patients after receipt of induction therapy. The appearance of other AML-associated mutations, identified together with NPM1 at time of remission, was more frequent among patients relapsing. These pilot data provide support for concurrent assessment of Deep Amplicon sequencing together with a broad standard NGS AML mutational assay to further enhance risk stratification of NPM1-mutated patients. Additionally, while NPM1 clones are present in all patients examined at the time of relapse, persistence or development of targetable clones justifies repeat broad NGS sequencing at this time. Figure Disclosures Bhatnagar: Novartis and Astellas: Consultancy, Honoraria; Cell Therapeutics, Inc.: Other: Research support; Karyopharm Therapeutics: Other: Research support. Mims:Agios Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees; Astellas Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees; Jazz Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees; Abbvie: Membership on an entity's Board of Directors or advisory committees; PTC Therapeutics: Membership on an entity's Board of Directors or advisory committees. Behbehani:Fluidigm corporation: Other: Travel funding. Byrd:Novartis: Other: Travel Expenses, Speakers Bureau; TG Therapeutics: Other: Travel Expenses, Research Funding, Speakers Bureau; Genentech: Research Funding; Pharmacyclics LLC, an AbbVie Company: Other: Travel Expenses, Research Funding, Speakers Bureau; BeiGene: Research Funding; Janssen: Consultancy, Other: Travel Expenses, Research Funding, Speakers Bureau; Acerta: Research Funding; Gilead: Other: Travel Expenses, Research Funding, Speakers Bureau; Ohio State University: Patents & Royalties: OSU-2S.


2020 ◽  
Vol 11 (05) ◽  
pp. 232-238
Author(s):  
Marcus Kleber

ZUSAMMENFASSUNGDas kolorektale Karzinom (KRK) ist einer der häufigsten malignen Tumoren in Deutschland. Einer frühzeitigen Diagnostik kommt große Bedeutung zu. Goldstandard ist hier die Koloskopie. Die aktuelle S3-Leitlinie Kolorektales Karzinom empfiehlt zum KRK-Screening den fäkalen okkulten Bluttest. Für das Monitoring von Patienten vor und nach Tumorresektion werden die Messung des Carcinoembryonalen Antigens (CEA) und der Mikrosatellitenstabilität empfohlen. Für die Auswahl der korrekten Chemotherapie scheint derzeit eine Überprüfung des Mutationsstatus, mindestens des KRAS-Gens und des BRAF-Gens, sinnvoll zu sein. Eine Reihe an neuartigen Tumormarkern befindet sich momentan in der Entwicklung, hat jedoch noch nicht die Reife für eine mögliche Anwendung in der Routinediagnostik erreicht. Den schnellsten Weg in die breite Anwendung können Next-Generation-Sequencing-basierte genetische Tests finden.


Sign in / Sign up

Export Citation Format

Share Document