scholarly journals Calculating the serial interval of SARS-CoV-2 in Lebanon using 2020 contact-tracing data

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Nadine Haddad ◽  
Hannah Eleanor Clapham ◽  
Hala Abou Naja ◽  
Majd Saleh ◽  
Zeina Farah ◽  
...  

Abstract Introduction The first detected case in Lebanon on 21 February 2020 engendered implementation of a nationwide lockdown alongside timely contact-tracing and testing. Objectives Our study aims to calculate the serial interval of SARS-CoV-2 using contact tracing data collected 21 February to 30 June 2020 in Lebanon to guide testing strategies. Methods rRT-PCR positive COVID-19 cases reported to the Ministry of Public Health Epidemiological Surveillance Program (ESU-MOH) are rapidly investigated and identified contacts tested. Positive cases and contacts assigned into chains of transmission during the study time-period were verified to identify those symptomatic, with non-missing date-of-onset and reported source of exposure. Selected cases were classified in infector–infectee pairs. We calculated mean and standard deviation for the serial interval and best distribution fit using AIC criterion. Results Of a total 1788 positive cases reported, we included 103 pairs belonging to 24 chains of transmissions. Most cases were Lebanese (98%) and male (63%). All infectees acquired infection locally. Mean serial interval was 5.24 days, with a standard deviation of 3.96 and a range of − 4 to 16 days. Normal distribution was an acceptable fit for our non-truncated data. Conclusion Timely investigation and social restriction measures limited recall and reporting biases. Pre-symptomatic transmission up to 4 days prior to symptoms onset was documented among close contacts. Our SI estimates, in line with international literature, provided crucial information that fed into national contact tracing measures. Our study, demonstrating the value of contact-tracing data for evidence-based response planning, can help inform national responses in other countries.

Author(s):  
M J A Reid ◽  
P Prado ◽  
H Brosnan ◽  
A Ernst ◽  
H Spindler ◽  
...  

Abstract We sought to assess the proportion of elicited close contacts diagnosed with COVID-19 at the start, and before exiting quarantine, in San Francisco, USA. From June 8th to August 31st, 6946 contacts were identified; 3008 (46.3%) tested, 940 (13.5%) tested positive; 90% tested positive in first 9 days of quarantine.


Author(s):  
Yong Sul Won ◽  
Jong-Hoon Kim ◽  
Chi Young Ahn ◽  
Hyojung Lee

While the coronavirus disease 2019 (COVID-19) outbreak has been ongoing in Korea since January 2020, there were limited transmissions during the early stages of the outbreak. In the present study, we aimed to provide a statistical characterization of COVID-19 transmissions that led to this small outbreak. We collated the individual data of the first 28 confirmed cases reported from 20 January to 10 February 2020. We estimated key epidemiological parameters such as reporting delay (i.e., time from symptom onset to confirmation), incubation period, and serial interval by fitting probability distributions to the data based on the maximum likelihood estimation. We also estimated the basic reproduction number (R0) using the renewal equation, which allows for the transmissibility to differ between imported and locally transmitted cases. There were 16 imported and 12 locally transmitted cases, and secondary transmissions per case were higher for the imported cases than the locally transmitted cases (nine vs. three cases). The mean reporting delays were estimated to be 6.76 days (95% CI: 4.53, 9.28) and 2.57 days (95% CI: 1.57, 4.23) for imported and locally transmitted cases, respectively. The mean incubation period was estimated to be 5.53 days (95% CI: 3.98, 8.09) and was shorter than the mean serial interval of 6.45 days (95% CI: 4.32, 9.65). The R0 was estimated to be 0.40 (95% CI: 0.16, 0.99), accounting for the local and imported cases. The fewer secondary cases and shorter reporting delays for the locally transmitted cases suggest that contact tracing of imported cases was effective at reducing further transmissions, which helped to keep R0 below one and the overall transmissions small.


2022 ◽  
Author(s):  
Sam Abbott ◽  
Katharine Sherratt ◽  
Moritz Gerstung ◽  
Sebastian Funk

Background Early estimates from South Africa indicated that the Omicron COVID-19 variant may be both more transmissible and have greater immune escape than the previously dominant Delta variant. The rapid turnover of the latest epidemic wave in South Africa as well as initial evidence from contact tracing and household infection studies has prompted speculation that the generation time of the Omicron variant may be shorter in comparable settings than the generation time of the Delta variant. Methods We estimated daily growth rates for the Omicron and Delta variants in each UKHSA region from the 23rd of November to the 23rd of December 2021 using surveillance case counts by date of specimen and S-gene target failure status with an autoregressive model that allowed for time-varying differences in the transmission advantage of the Delta variant where the evidence supported this. By assuming a gamma distributed generation distribution we then estimated the generation time distribution and transmission advantage of the Omicron variant that would be required to explain this time varying advantage. We repeated this estimation process using two different prior estimates for the generation time of the Delta variant first based on household transmission and then based on its intrinsic generation time. Results Visualising our growth rate estimates provided initial evidence for a difference in generation time distributions. Assuming a generation time distribution for Delta with a mean of 2.5-4 days (90% credible interval) and a standard deviation of 1.9-3 days we estimated a shorter generation time distribution for Omicron with a mean of 1.5-3.2 days and a standard deviation of 1.3-4.6 days. This implied a transmission advantage for Omicron in this setting of 160%-210% compared to Delta. We found similar relative results using an estimate of the intrinsic generation time for Delta though all estimates increased in magnitude due to the longer assumed generation time. Conclusions We found that a reduction in the generation time of Omicron compared to Delta was able to explain the observed variation over time in the transmission advantage of the Omicron variant. However, this analysis cannot rule out the role of other factors such as differences in the populations the variants were mixing in, differences in immune escape between variants or bias due to using the test to test distribution as a proxy for the generation time distribution.


2020 ◽  
Vol 148 ◽  
Author(s):  
Lin Yang ◽  
Jingyi Dai ◽  
Jun Zhao ◽  
Yunfu Wang ◽  
Pingji Deng ◽  
...  

Abstract A novel coronavirus disease, designated as COVID-19, has become a pandemic worldwide. This study aims to estimate the incubation period and serial interval of COVID-19. We collected contact tracing data in a municipality in Hubei province during a full outbreak period. The date of infection and infector–infectee pairs were inferred from the history of travel in Wuhan or exposed to confirmed cases. The incubation periods and serial intervals were estimated using parametric accelerated failure time models, accounting for interval censoring of the exposures. Our estimated median incubation period of COVID-19 is 5.4 days (bootstrapped 95% confidence interval (CI) 4.8–6.0), and the 2.5th and 97.5th percentiles are 1 and 15 days, respectively; while the estimated serial interval of COVID-19 falls within the range of −4 to 13 days with 95% confidence and has a median of 4.6 days (95% CI 3.7–5.5). Ninety-five per cent of symptomatic cases showed symptoms by 13.7 days (95% CI 12.5–14.9). The incubation periods and serial intervals were not significantly different between male and female, and among age groups. Our results suggest a considerable proportion of secondary transmission occurred prior to symptom onset. And the current practice of 14-day quarantine period in many regions is reasonable.


2018 ◽  
Vol 53 (4) ◽  
pp. 231-240
Author(s):  
C. L. Proulx ◽  
B. W. Kilgour ◽  
A. P. Francis ◽  
R. F. Bouwhuis ◽  
J. R. Hill

Abstract The underlying natural relationship between conductivity and alkalinity was used to identify surface water quality monitoring sites that are in a ‘reference’ or minimally disturbed condition. Data from over 40,500 freshwater samples from 1,230 sites were combined for the time period of 2005–2015 from various federal, provincial, and joint federal–provincial/territorial freshwater monitoring programs (e.g., Freshwater Quality Monitoring and Surveillance Program, Ontario's Provincial Water Quality Monitoring Network). Of the samples, 30,347 provided conductivity and alkalinity data. Surface water samples with a measured conductivity that deviated (by more than 41 μS/cm) from the predicted conductivity calculated from the sample's alkalinity were deemed to be non-representative of a reference condition, while samples within 41 μS/cm of the predicted value were deemed representative of a reference condition. The 41 μS/cm cutoff value was determined using signal detection theory. The conductivity–alkalinity model was validated through a comparison with land cover data by demonstrating that samples identified as ‘reference’ were typically from catchments that had minimal anthropogenic disturbances. The proposed approach provides a rapid means of evaluating the reference condition of a watercourse, and of identifying data that provide an estimate of reference condition.


2021 ◽  
Vol 111 (3) ◽  
pp. 485-493
Author(s):  
Ashley Schappell D'Inverno ◽  
Nimi Idaikkadar ◽  
Debra Houry

Objectives. To report trends in sexual violence (SV) emergency department (ED) visits in the United States. Methods. We analyzed monthly changes in SV rates (per 100 000 ED visits) from January 2017 to December 2019 using Centers for Disease Control and Prevention’s National Syndromic Surveillance Program data. We stratified the data by sex and age groups. Results. There were 196 948 SV-related ED visits from January 2017 to December 2019. Females had higher rates of SV-related ED visits than males. Across the entire time period, females aged 50 to 59 years showed the highest increase (57.33%) in SV-related ED visits, when stratified by sex and age group. In all strata examined, SV-related ED visits displayed positive trends from January 2017 to December 2019; 10 out of the 24 observed positive trends were statistically significant increases. We also observed seasonal trends with spikes in SV-related ED visits during warmer months and declines during colder months, particularly in ages 0 to 9 years and 10 to 19 years. Conclusions. We identified several significant increases in SV-related ED visits from January 2017 to December 2019. Syndromic surveillance offers near-real-time surveillance of ED visits and can aid in the prevention of SV.


2020 ◽  
Vol 55 (6) ◽  
pp. 580-586 ◽  
Author(s):  
Christine M. Baugh ◽  
William P. Meehan ◽  
Thomas G. McGuire ◽  
Laura A. Hatfield

Context Structural features of health care environments are associated with patient health outcomes, but these relationships are not well understood in sports medicine. Objective To evaluate the association between athlete injury outcomes and structural measures of health care at universities: (1) clinicians per athlete, (2) financial model of the sports medicine department, and (3) administrative reporting structure of the sports medicine department. Design Descriptive epidemiology study. Setting Collegiate sports medicine programs. Patients or Other Participants Colleges that contribute data to the National Collegiate Athletic Association (NCAA) Injury Surveillance Program. Main Outcome Measure(s) We combined injury data from the NCAA Injury Surveillance Program, sports medicine staffing data from NCAA Research, athletic department characteristics from the United States Department of Education, and financial and administrative oversight model data from a previous survey. Rates of injury, reinjury, concussion, and time loss (days) in NCAA athletes. Results Compared with schools that had an average number of clinicians per athlete, schools 1 standard deviation above average had a 9.5% lower injury incidence (103.6 versus 93.7 per 10000 athlete-exposures [AEs]; incidence rate ratio [IRR] = 0.905, P < .001), 2.7% lower incidence of reinjury (10.6 versus 10.3 per 10000 AEs; IRR = 0.973, P = .004), and 6.7% lower incidence of concussion (6.1 versus 5.7 per 10000 AEs; IRR = 0.933, P < .001). Compared with the average, schools that had 1 standard deviation more clinicians per athlete had 16% greater injury time loss (5.0 days versus 4.2 days; IRR = 1.16, P < .001). At schools with sports medicine departments financed by or reporting to the athletics department (or both), athletes had higher injury incidences (31% and 9%, respectively). Conclusions The financial and reporting structures of collegiate sports medicine departments as well as the number of clinicians per athlete were associated with injury risk. Increasing the number of sports medicine clinicians on staff and structuring sports medicine departments such that they are financed by and report to a medical institution may reduce athlete injury incidence.


2020 ◽  
Author(s):  
Mohak Gupta ◽  
Giridara G Parameswaran ◽  
Manraj S Sra ◽  
Rishika Mohanta ◽  
Devarsh Patel ◽  
...  

Brief AbstractWe analysed SARS-CoV-2 surveillance and contact tracing data from Karnataka, India up to 21 July 2020. We estimated metrics of infectiousness and the tendency for superspreading (overdispersion), and evaluated potential determinants of infectiousness and symptomaticity in COVID-19 cases. Among 956 cases confirmed to be forward-traced, 8.7% of index cases had 14.4% of contacts but caused 80% of all secondary cases, suggesting significant heterogeneity in individual-level transmissibility of SARS-CoV-2 which could not be explained by the degree of heterogeneity in underlying number of contacts. Secondary attack rate was 3.6% among 16715 close contacts. Transmission was higher when index case was aged >18 years, or was symptomatic (adjusted risk ratio, aRR 3.63), or was lab-confirmed ≥4 days after symptom onset (aRR 3.01). Probability of symptomatic infection increased with age, and symptomatic infectors were 8.16 times more likely to generate symptomatic secondaries. This could potentially cause a snowballing effect on infectiousness and clinical severity across transmission generations; further studies are suggested to confirm this. Mean serial interval was 5.4 days. Adding backward contact tracing and targeting control measures to curb super-spreading may be prudent. Due to low symptomaticity and infectivity, interventions aimed at children might have a relatively small impact on reducing transmission.Structured AbstractBackgroundIndia has experienced the second largest outbreak of COVID-19 globally, yet there is a paucity of studies analysing contact tracing data in the region. Such studies can elucidate essential transmission metrics which can help optimize disease control policies.MethodsWe analysed contact tracing data collected under the Integrated Disease Surveillance Programme from Karnataka, India between 9 March and 21 July 2020. We estimated metrics of disease transmission including the reproduction number (R), overdispersion (k), secondary attack rate (SAR), and serial interval. R and k were jointly estimated using a Bayesian Markov Chain Monte Carlo approach. We evaluated the effect of age and other factors on the risk of transmitting the infection, probability of asymptomatic infection, and mortality due to COVID-19.FindingsUp to 21 July, we found 111 index cases that crossed the super-spreading threshold of ≥8 secondary cases. R and k were most reliably estimated at R 0.75 (95% CI, 0.62-0.91) and k 0.12 (0.11-0.15) for confirmed traced cases (n=956); and R 0.91 (0.72-1.15) and k 0.22 (0.17-0.27) from the three largest clusters (n=394). Among 956 confirmed traced cases, 8.7% of index cases had 14.4% of contacts but caused 80% of all secondary cases. Among 16715 contacts, overall SAR was 3.6% (3.4-3.9) and symptomatic cases were more infectious than asymptomatic cases (SAR 7.7% vs 2.0%; aRR 3.63 [3.04-4.34]). As compared to infectors aged 19-44 years, children were less infectious (aRR 0.21 [0.07-0.66] for 0-5 years and 0.47 [0.32-0.68] for 6-18 years). Infectors who were confirmed ≥4 days after symptom onset were associated with higher infectiousness (aRR 3.01 [2.11-4.31]). Probability of symptomatic infection increased with age, and symptomatic infectors were 8.16 (3.29-20.24) times more likely to generate symptomatic secondaries. Serial interval had a mean of 5.4 (4.4-6.4) days with a Weibull distribution. Overall case fatality rate was 2.5% (2.4-2.7) which increased with age.ConclusionWe found significant heterogeneity in the individual-level transmissibility of SARS-CoV-2 which could not be explained by the degree of heterogeneity in the underlying number of contacts. To strengthen contact tracing in over-dispersed outbreaks, testing and tracing delays should be minimised, retrospective contact tracing should be considered, and contact tracing performance metrics should be utilised. Targeted measures to reduce potential superspreading events should be implemented. Interventions aimed at children might have a relatively small impact on reducing SARS-CoV-2 transmission owing to their low symptomaticity and infectivity. There is some evidence that symptomatic cases produce secondary cases that are more likely to be symptomatic themselves which may potentially cause a snowballing effect on infectiousness and clinical severity across transmission generations; further studies are needed to confirm this finding.FundingGiridhara R Babu is funded by an Intermediate Fellowship by the Wellcome Trust DBT India Alliance (Clinical and Public Health Research Fellowship); grant number: IA/CPHI/14/1/501499.


Sign in / Sign up

Export Citation Format

Share Document