scholarly journals Next-generation sequencing combined with serological tests based pathogen analysis for a neurocysticercosis patient with a 20-year history:a case report

BMC Neurology ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Bin Chen ◽  
Zheng Chen ◽  
Yi-shu Yang ◽  
Gui-lan Cai ◽  
Xiao-jiao Xu ◽  
...  

Abstract Background Neurocysticercosis (NCC) is the most common helminthic infection of the central nervous system (CNS) caused by the larval stage of Taenia solium. Accurate and early diagnosis of NCC remains challenging due to its heterogeneous clinical manifestations, neuroimaging deficits, variable sensitivity, and specificity of serological tests. Next-generation sequencing (NGS)-based pathogen analysis in patient’s cerebrospinal fluid (CSF) with NCC infection has recently been reported indicating its diagnostic efficacy. In this case study, we report the diagnosis of a NCC patient with a symptomatic history of over 20 years using NGS analysis and further confirmation of the pathology by immunological tests. Case presentation This study reports the clinical imaging and immunological features of a patient with a recurrent headache for more than 20 years, which worsened gradually with the symptom of fever for more than 7 years and paroxysmal amaurosis for more than 1 year. By utilizing NGS technique, the pathogen was detected in patient’s CSF, and the presence of Taenia solium-DNA was confirmed by a positive immunological reaction to cysticercus IgG antibody in CSF and serum samples. The symptoms of the patient were alleviated, and the CSF condition was improved substantially after the anti-helminthic treatment. Conclusions This study suggests that combining CSF NGS with cysticercus IgG testing may be a highly promising approach for diagnosing the challenging cases of NCC. Further studies are needed to evaluate the parasitic DNA load in patients’ CSF for the diagnosis of disease severity, stage, and monitoring of therapeutic responses.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Imteyaz Ahmad Khan ◽  
Safoora Rashid ◽  
Nidhi Singh ◽  
Sumaira Rashid ◽  
Vishwajeet Singh ◽  
...  

AbstractEarly-stage diagnosis of pancreatic ductal adenocarcinoma (PDAC) is difficult due to non-specific symptoms. Circulating miRNAs in body fluids have been emerging as potential non-invasive biomarkers for diagnosis of many cancers. Thus, this study aimed to assess a panel of miRNAs for their ability to differentiate PDAC from chronic pancreatitis (CP), a benign inflammatory condition of the pancreas. Next-generation sequencing was performed to identify miRNAs present in 60 FFPE tissue samples (27 PDAC, 23 CP and 10 normal pancreatic tissues). Four up-regulated miRNAs (miR-215-5p, miR-122-5p, miR-192-5p, and miR-181a-2-3p) and four down-regulated miRNAs (miR-30b-5p, miR-216b-5p, miR-320b, and miR-214-5p) in PDAC compared to CP were selected based on next-generation sequencing results. The levels of these 8 differentially expressed miRNAs were measured by qRT-PCR in 125 serum samples (50 PDAC, 50 CP, and 25 healthy controls (HC)). The results showed significant upregulation of miR-215-5p, miR-122-5p, and miR-192-5p in PDAC serum samples. In contrast, levels of miR-30b-5p and miR-320b were significantly lower in PDAC as compared to CP and HC. ROC analysis showed that these 5 miRNAs can distinguish PDAC from both CP and HC. Hence, this panel can serve as a non-invasive biomarker for the early detection of PDAC.


Author(s):  
Gavin Spickett

Covering tissue typing, this chapter describes key elements for tissue matching, a key element for successful transplantation. Methods for detecting pre-formed circulating antibodies, serological tests, and genotyping are all described. Techniques including RFLP, PCR, sequence-specific primer are explained, along with a look forward to next-generation sequencing.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Zi-Wei Lan ◽  
Min-Jia Xiao ◽  
Yuan-lin Guan ◽  
Ya-Jing Zhan ◽  
Xiang-Qi Tang

Abstract Background Listeria monocytogenes (L. monocytogenes) is a facultative intracellular bacterial pathogen which can invade different mammalian cells and reach to the central nervous system (CNS), leading to meningoencephalitis and brain abscesses. In the diagnosis of L. monocytogenes meningoencephalitis (LMM), the traditional test often reports negative owing to the antibiotic treatment or a low number of bacteria in the cerebrospinal fluid. To date, timely diagnosis and accurate treatment remains a challenge for patients with listeria infections. Case presentation We present the case of a 66-year-old woman whose clinical manifestations were suspected as tuberculous meningoencephalitis, but the case was finally properly diagnosed as LMM by next-generation sequencing (NGS). The patient was successfully treated using a combined antibacterial therapy, comprising ampicillin and trimethoprim-sulfamethoxazole. Conclusion To improve the sensitivity of LMM diagnosis, we used NGS for the detection of L. monocytogenes. Hence, the clinical utility of this approach can be very helpful since it provides quickly and trust results.


Author(s):  
Yinan Yang ◽  
Xiaobin Hu ◽  
Li Min ◽  
Xiangyu Dong ◽  
Yuanlin Guan

Abstract Background Encephalitis is caused by infection, immune mediated diseases, or primary inflammatory diseases. Of all the causative infectious pathogens, 90% are viruses or bacteria. Granulomatous amoebic encephalitis (GAE), caused by Balamuthia mandrillaris, is a rare but life-threatening disease. Diagnosis and therapy are frequently delayed due to the lack of specific clinical manifestations. Method A healthy 2 year old Chinese male patient initially presented with a nearly 2 month history of irregular fever. We present this case of granulomatous amoebic encephalitis caused by B. mandrillaris. Next generation sequencing of the patient’s cerebrospinal fluid (CSF) was performed to identify an infectious agent. Result The results of next generation sequencing of the CSF showed that most of the mapped reads belonged to Balamuthia mandrillaris. Conclusion Next generation sequencing (NGS) is an unbiased and rapid diagnostic tool. The NGS method can be used for the rapid identification of causative pathogens. The NGS method should be widely applied in clinical practice and help clinicians provide direction for the diagnosis of diseases, especially for rare and difficult cases.


2017 ◽  
Vol 65 (9) ◽  
pp. 1477-1485 ◽  
Author(s):  
Sneha Somasekar ◽  
Deanna Lee ◽  
Jody Rule ◽  
Samia N Naccache ◽  
Mars Stone ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Jiejun Shi ◽  
Naibin Yang ◽  
Guoqing Qian

Background: Talaromycosis is a serious fungal infection which is rare in immunocompetent people. Since its clinical manifestations lack specificity, it is easy to escape diagnosis or be misdiagnosed leading to high mortality and poor prognosis. It is necessary to be alert to the disease when broad-spectrum antibiotics do not work well in immunocompetent patients.Case Presentation: A 79-year-old man was admitted to our Infectious Diseases Department for recurrent fever and cough. Before admission he has been treated with piperacillin-tazobactam, moxifloxacin followed by antituberculous agents in other hospitals while his symptoms were not thoroughly eased. During the first hospitalization in another hospital, he has been ordered a series of examination including radionuclide whole body bone imaging, transbronchial needle aspiration for subcarinal nodes. However, the results were negative showing no neoplasm. After being admitted to our hospital, he underwent various routine examinations. The initial diagnosis was bacterial pneumonia, and he was given meropenem injection and tigecycline injection successively, but there were no improvement of symptoms and inflammatory indicators. In the end, the main pathogen Talaromyces marneffei was confirmed using Metagenomic Next-Generation Sequencing (mNGS), and his clinical symptoms gradually relieved after targeted antifungal treatment using voriconazole.Conclusion: When empirical anti-infective treatment is ineffective, it is necessary to consider the possibility of opportunistic fungal infections on immunocompetent patients. mNGS, as a new generation of pathogenic testing methods, can often detect pathogenic bacteria faster than traditional methods, providing important help for clinical decision-making.


2021 ◽  
Author(s):  
Junyan Qu ◽  
Zhiyong Zong

Abstract Background Disseminated Strongyloides stercoralis hyperinfection is rarely described in immunocompetent individuals and can lead to fatal outcomes if not recognized and diagnosed early. Non-specific clinical manifestations, such as pneumonia and gastroenteritis, pose a diagnostic dilemma. Case presentation: We report a case of a 67-year-old Chinese male who presented with two months of abdominal pain, fever, headache, vomiting, constipation, and slight cough with sputum. He had been in good health and had no history of glucocorticoid use. He was diagnosed with enterococcal meningitis and intestinal obstruction at a local hospital and improved after treatment with vancomycin, but symptoms of headache and abdominal pain soon recurred. The metagenomic next-generation sequencing (mNGS) of the cerebrospinal fluid using Illumina X10 sequencer revealed 7 sequence reads matching Strongyloides stercoralis. Disseminated strongyloidiasis was suspected. Next, microscopic examination of gastric fluid revealed Larvae of S. stercoralis. DNA extracted of larvae, the presence of both S. stercoralis ribosomal DNA gene and mitochondrial cytochrome c oxidase subunit 1 gene was identified. Disseminated strongyloidiasis was diagnosed. Albendazole (400 mg, twice daily) was used and the patient recovered gradually. Conclusions S. stercoralis hyperinfection can occur in immunocompetent individuals, imposing challenges for diagnosis. mNGS may be a useful tool for detecting rare infectious disease. The case would help clinicians to raise awareness of strongyloidiasis in non-endemic areas and reduce fatality.


Author(s):  
Binglei Zhang ◽  
Jian Zhou ◽  
Ruirui Gui ◽  
Zhen Li ◽  
Yingling Zu ◽  
...  

Central nervous system (CNS) complications can occur in 9%–15% of patients after allogeneic hematopoietic stem cell transplantation (allo-HSCT). The clinical manifestations of the CNS complications are non-specific, with most of them being disturbances of consciousness, convulsions, headaches, fever, and epilepsy, making it difficult to infer the cause of the complications based on clinical manifestations. We retrospectively analyzed the sensitivity and feasibility of metagenomic next generation sequencing (mNGS) in the diagnosis of CNS infections after allo-HSCT. Lumbar punctures were performed on 20 patients with CNS symptoms after receiving alternative donor HSCT(AD-HSCT) at the Affiliated Cancer Hospital of Zhengzhou University from February 2019 to December 2020, and their cerebrospinal fluid (CSF) was collected. The mNGS technique was used to detect pathogens in the CSF. Routine CSF testing, biochemical analyses, G experiments, GM experiments, ink staining, acid-fast staining, and bacterial cultures were carried out, and quantitative PCR (qPCR) tests were used to detect cytomegalovirus (CMV), Epstein-Barr virus (EBV), BK polyomavirus (BKPyV), and human alphaherpesvirus (HHV). A total of 29 tests were performed with 21 of them being positive. Of the five negative patients, three were diagnosed with a posterior reversible encephalopathy syndrome, one as having transplantation-associated thrombotic microangiopathy, and one with transient seizure caused by hypertension. Fifteen patients tested positive, of which four had single infections and eleven had mixed infections. Five cases of fungal infections, six cases of bacterial infections, and 13 cases of viral infections were detected. Among the 13 cases of viral infections, ten cases were CMV(HHV-5); three were BKPyV; two were Torque teno virus (TTV); Two were HHV-1,two were EBV(HHV4), and one each of HpyV5 and HHV-6B. Thirteen patients tested positive for virus while the qPCR detection method of 6 identical specimens were below the minimum detection limit(<1×103 U/ml). The mNGS technique is highly sensitive, and it can be used to diagnose CNS infections after allo-HSCT.


2021 ◽  
Author(s):  
Henrik Sadlowski ◽  
Veronika Schmidt ◽  
Jonathan Hiss ◽  
Christian G. Schneider ◽  
Gideon Zulu ◽  
...  

Here we present a detailed protocol for the identification of Taenia solium based on the few Taenia spp. eggs found in diagnostic stool samples. Our approach is based on "mail order" RNA sequencing of single eggs and can be performed in laboratories equipped with basic tools such as a microscope, a Bunsen burner, and access to an international post office for shipping samples to a next-generation sequencing facility. This protocol describes sample collection and transport, isolation of individual Taenia spp. eggs, reliable disruption of individual Taenia eggs, and important considerations for shipping samples to a next-generation sequencing facility. We provide images and videos to help prepare the tools needed for the protocol. Additional information on our rationale for designing the critical steps can help implement the protocol in new environments.


2016 ◽  
Vol 43 (10) ◽  
pp. 1165-1178 ◽  
Author(s):  
Aarti Gautam ◽  
Raina Kumar ◽  
George Dimitrov ◽  
Allison Hoke ◽  
Rasha Hammamieh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document