scholarly journals MiR-16-5p suppresses breast cancer proliferation by targeting ANLN

BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ziming Wang ◽  
Siyuan Hu ◽  
Xinyang Li ◽  
Zhiwei Liu ◽  
Danyang Han ◽  
...  

Abstract Background In recent years, gene expression-based analysis has been used for disease biomarker discovery, providing ways for better diagnosis, leading to improvement of clinical treatment efficacy. This study aimed to explore the role of miR-16-5p and ANLN in breast cancer (BC). Methods Cohort datasets of BC were obtained from the Gene Expression Omnibus (GEO) and the Cancer Genome Atlas (TCGA) and analyzed by bioinformatics tools. qRT-PCR and western blotting were applied to validate ANLN and its protein expression. A dual-luciferase reporter assay was used to prove the regulatory relationship of miR-16-5p and ANLN. Finally, MTT, wound healing, Transwell invasion and flow cytometry analyses of the cell cycle and apoptosis were performed to assess cell proliferation, migration, invasion, cell cycle and apoptosis, respectively. Results A total of 195 differentially expressed genes (DEGs) and 50 overlapping microRNAs (miRNAs) were identified. Among these DEGs and miRNAs, ANLN, associated with poor overall survival in BC, overlapped in the GSE29431, GSE42568, TCGA and GEPIA2 databases. Moreover, ANLN was highly expressed, while miR-16-5p was lower in BC cells than in breast epithelial cells. Then, we confirmed that ANLN was directly targeted by miR-16-5p in BC cells. Over-expression of miR-16-5p and knock-down of ANLN remarkably inhibited cell proliferation and migration as well as cell invasion, arrested the cells in G2/M phase and induced apoptosis in BC cells. Conclusions These findings suggest that miR-16-5p restrains proliferation, migration and invasion while affecting cell cycle and promotes apoptosis by regulating ANLN, thereby providing novel candidate biomarkers for the diagnosis and treatment of BC.

BMC Urology ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yujie Liu ◽  
Xing Hu ◽  
Liang Hu ◽  
Changjing Xu ◽  
Xuemei Liang

Abstract Background Clear cell renal cell carcinoma (ccRCC) is one of the best-characterized and most pervasive renal cancers. The present study aimed to explore the effects and potential mechanisms of let-7i-5p in ccRCC cells. Methods Using bioinformatics analyses, we investigated the expression of let-7i-5p in The Cancer Genome Atlas (TCGA) database and predicted biological functions and possible target genes of let-7i-5p in ccRCC cells. Cell proliferation assay, wound healing assay and transwell invasion assay were conducted to characterize the effects of let-7i-5p in ccRCC cells. To verify the interactions between let-7i-5p and HABP4, dual-luciferase reporter assay, quantitative real-time polymerase chain reaction, and western blotting were conducted. Rescue experiments were used to investigate the relationship between let-7i-5p and HABP4. Results TCGA data analysis revealed that ccRCC tissues had significantly increased let-7i-5p expression, which was robustly associated with poor overall survival. Further verification showed that ccRCC cell proliferation, migration and invasion were inhibited by let-7i-5p inhibitor but enhanced by let-7i-5p mimics. Subsequently, HABP4 was predicted to be the target gene of let-7i-5p. TCGA data showed that ccRCC tissues had decreased expression of HABP4 and that HABP4 expression was negatively correlated with let-7i-5p. Further verification showed that downregulation of HABP4 expression promoted cell proliferation, migration and invasion. The dual-luciferase reporter gene assay suggested that the let-7i-5p/HABP4 axis was responsible for the development of ccRCC. Conclusion Our results provide evidence that let-7i-5p functions as a tumor promoter in ccRCC and facilitates cell proliferation, migration and invasion by targeting HABP4. These results clarify the pathogenesis of ccRCC and offer a potential target for its treatment.


Author(s):  
He Zhu ◽  
Hongwei Zhang ◽  
Youliang Pei ◽  
Zhibin Liao ◽  
Furong Liu ◽  
...  

Abstract Background Hepatocellular carcinoma (HCC) is a common type of malignant human cancer with high morbidity and poor prognosis, causing numerous deaths per year worldwide. Growing evidence has been demonstrated that long non-coding RNAs (lncRNAs) are closely associated with hepatocarcinogenesis and metastasis. However, the roles, functions, and working mechanisms of most lncRNAs in HCC remain poorly defined. Methods Real-time quantitative polymerase chain reaction (qRT-PCR) was used to detect the expression level of CCDC183-AS1 in HCC tissues and cell lines. Cell proliferation, migration and invasion ability were evaluated by CCK-8 and transwell assay, respectively. Animal experiments were used to explore the role of CCDC183-AS1 and miR-589-5p in vivo. Bioinformatic analysis, dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay were performed to confirm the regulatory relationship between CCDC183-AS1, miR-589-5p and SKP1. Results Significantly upregulated expression of CCDC183-AS1 was observed in both HCC tissues and cell lines. HCC patients with higher expression of CCDC183-AS1 had a poorer overall survival rate. Functionally, overexpression of CCDC183-AS1 markedly promoted HCC cell proliferation, migration and invasion in vitro and tumor growth and metastasis in vivo, whereas the downregulation of CCDC183-AS1 exerted opposite effects. MiR-589-5p inhibitor counteracted the proliferation, migration and invasion inhibitory effects induced by CCDC183-AS1 silencing. Mechanistically, CCDC183-AS1 acted as a ceRNA through sponging miR-589-5p to offset its inhibitory effect on the target gene SKP1, then promoted the tumorigenesis of HCC. Conclusions CCDC183-AS1 functions as an oncogene to promote HCC progression through the CCDC183-AS1/miR-589-5p/SKP1 axis. Our study provided a novel potential therapeutic target for HCC patients.


Pharmacology ◽  
2021 ◽  
pp. 1-15
Author(s):  
Zhaohui Zhou ◽  
Ping Yang ◽  
Binming Zhang ◽  
Maohui Yao ◽  
Yali Jia ◽  
...  

<b><i>Introduction:</i></b> In recent years, the regulatory activities of long noncoding RNAs have received increasing attention as an important research focus. This study aimed to characterize the expression and detailed roles of TTC39A antisense RNA 1 (TTC39A-AS1) in breast cancer (BC), in addition to concentrating on its downstream mechanisms. <b><i>Methods:</i></b> Quantitative RT-PCR was performed to determine the expression levels of TTC39A-AS1, microRNA-483-3p (miR-483-3p), and metastasis-associated gene 2 (MTA2). Further, the detailed functions of TTC39A-AS1 in BC cells were confirmed using the Cell Counting Kit 8 assay, flow cytometric analysis, and Transwell cell migration and invasion assays. The targeting relationship between TTC39A-AS1, miR-483-3p, and MTA2 in BC was predicted via bioinformatics analysis and further confirmed by performing the luciferase reporter assay and RNA immunoprecipitation. <b><i>Results:</i></b> TTC39A-AS1 was present in high levels in BC; this result was confirmed in our sample cohort and The Cancer Genome Atlas database. Patients with BC with a high level of TTC39A-AS1 had a shorter overall survival than those with a low level of TTC39A-AS1. Functionally, the absence of TTC39A-AS1 accelerated cell apo­ptosis but retained cell proliferation, migration, and invasion. Mechanistically, TTC39A-AS1 functioned as a competing endogenous RNA in BC by sponging miR-483-3p and thereby indirectly increasing MTA2 expression. Finally, rescue experiments revealed that the tumor-inhibiting actions of TTC39A-AS1 knockdown on the malignant characteristics of BC cells could be reversed by inhibiting miR-483-3p or upregulating MTA2. <b><i>Conclusion:</i></b> The newly identified TTC39A-AS1/miR-483-3p/MTA2 pathway was revealed to be a critical regulator in the tumorigenicity of BC, possibly offering a novel therapeutic direction for the anticancer treatment of BC.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Miao Chen ◽  
Duo Wang ◽  
Junjie Liu ◽  
Zhizhan Zhou ◽  
Zhanling Ding ◽  
...  

Background. Hepatocellular carcinoma (HCC) is one of the most highly aggressive cancer worldwide with an extremely poor prognosis. Evidence has revealed that microRNA-587 (miR-587) is abnormally expressed in a series of cancers. However, its expressions and functions in HCC have not been clearly acknowledged. Methods. We detected the expression level of miR-587 both in the Gene Expression Omnibus (GEO) database and 86 paired clinical HCC tissues together with paired adjacent normal tissues by quantitative real-time PCR (qRT-PCR). Afterwards, the transfected HCC cell line SMMC-7721 cells were collected for the cell proliferation assay, cell-cycle arrest, cell migration, and invasion assays to explore the roles of miR-587 in regulating cellular function. In addition, bioinformatics analysis, combined with qRT-PCR and dual-luciferase reporter assays, were performed to confirm whether ribosomal protein SA (RPSA) mRNA was the direct target gene of miR-587. Moreover, the Cancer Genome Atlas (TCGA) and GEO databases as well as 86 paired clinical HCC tissues were used to verify the negative regulation between miR-587 and RPSA. Results. In the present study, both the GEO database (GSE36915 and GSE74618) analysis and qRT-PCR analysis of 86 paired clinical tissues showed that miR-587 was significantly downregulated in HCC tissues. The overexpression of miR-587 inhibited proliferation, cell cycle, migration, and invasion in SMMC-7721 cells. In addition, miR-587 directly interacted with the 3′-untranslated region (UTR) of RPSA. Moreover, miR-587 overexpression directly suppressed RPSA expression, and the two genes were inversely expressed in HCC based on the analyses in TCGA and GEO (GSE36376) databases and qPCR analysis of 86 paired clinical tissues. Conclusion. Our results demonstrate that miR-587 is downexpressed in HCC and regulates the cellular function by targeting RPSA.


2019 ◽  
Vol 39 (6) ◽  
Author(s):  
Zhan Zhou ◽  
Ya-Ping Xu ◽  
Li-Juan Wang ◽  
Yan Kong

AbstractThe specific functions and clinical significance of miR-940 in endometrial carcinoma (EC) have not been studied. First, we assessed the expression of miR-940 and MRVI1 in EC tissues collected from The Cancer Genome Atlas (TCGA) database and EC cell lines. miR-940 was significantly overexpressed in EC tissues and cell lines, particularly in RL95-2 cells. Correlation analysis showed that miR-940 expression level was remarkably associated with age, grade, and death. Moreover, the overall survival (OS) rate in the miR-940 low expression group was higher, compared with miR-940 high expression group. Univariate and multivariate models demonstrated that miR-940 expression, stage, and age were predictive indicators of OS. Moreover, there was no significance of the proliferation ability among the three EC cell lines (RL95-2, ISK, and KLE). To reveal the biological roles of miR-940, we respectively transfected RL95-2 cells with miR-940 mimics, miR-940 inhibitors, and control to further investigate the cell proliferation ability, and migration as well as invasion potential of RL95-2 cells. The transfection of miR-940 mimics significantly increased the proliferation and migration/invasion ability of RL95-2 cells. MRVI1 was predicted to be a potential target of miR-940 by means of in silico analysis followed by validation using luciferase reporter assays. MRVI1 was correlated with good prognosis. Moreover, forced expression of MRVI1 in miR-940 mimic transfected cells abolished the facilitation of miR-940 on cell proliferation, migration, and invasion of RL95-2 and KLE cells. In conclusion, our study demonstrates that miR-940 might function as a reliable diagnostic and prognostic signature in EC.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Xin Xu ◽  
Bang Chen ◽  
Shaopu Zhu ◽  
Jiawei Zhang ◽  
Xiaobo He ◽  
...  

Abstract Background Gastric cancer (GC) is one of the most common gastrointestinal malignancies worldwide. Emerging evidence indicates that hyperglycemia promotes tumor progression, especially the processes of migration, invasion and epithelial–mesenchymal transition (EMT). However, the underlying mechanisms of GC remain unclear. Method Data from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases were used to detect the expression of glycolysis-related enzymes and EMT-related transcription factors. Small interfering RNA (siRNA) transfection was performed to decrease ENO1 expression. Immunohistochemistry (IHC), Western blot and qRT-PCR analyses were used to measure gene expression at the protein or mRNA level. CCK-8, wound-healing and Transwell assays were used to assess cell proliferation, migration and invasion. Results Among the glycolysis-related genes, ENO1 was the most significantly upregulated in GC, and its overexpression was correlated with poor prognosis. Hyperglycemia enhanced GC cell proliferation, migration and invasion. ENO1 expression was also upregulated with increasing glucose concentrations. Moreover, decreased ENO1 expression partially reversed the effect of high glucose on the GC malignant phenotype. Snail-induced EMT was promoted by hyperglycemia, and suppressed by ENO1 silencing. Moreover, ENO1 knockdown inhibited the activation of transforming growth factor β (TGF-β) signaling pathway in GC. Conclusions Our results indicated that hyperglycemia induced ENO1 expression to trigger Snail-induced EMT via the TGF-β/Smad signaling pathway in GC.


Author(s):  
Qin Liu ◽  
Wei Wang ◽  
Fangqiong Li ◽  
Dongyang Yu ◽  
Chunfen Xu ◽  
...  

Triptolide, an extract of Tripterygium wilfordii, has been shown to have a potent anticancer activity. In the present study, it was found that triptolide could effectively induce apoptosis and inhibit proliferation and invasion in malignant MDA-MB-231 breast cancer cells. The study focused on its effect on inhibiting invasion, which has not been extensively reported to date. We predicted that triptolide may change invasion activity via microRNAs (miRNAs), which have been recognized as important regulators of gene expression. miRNAome variation in MDA-MB-231 cells with or without triptolide treatment demonstrated that miR-146a was upregulated following treatment with triptolide. Our previous studies have shown that miR-146a can inhibit migration and invasion by targeting RhoA in breast cancer. This time, we found that miR-146a can target Rac1, another key member of the Rho GTPase family. Luciferase reporter containing Rac1 3′-UTR was constructed to prove this hypothesis. In addition, following treatment with triptolide, the expression of RhoA and Rac1 was found to be decreased. These results indicated that triptolide exerts its anti-invasion activity through a miRNA-mediated mechanism, which indirectly regulates the expression of Rho GTPase. Triptolide combined with miR-146a could improve the effect of triptolide treatment on breast cancer.


2021 ◽  
Author(s):  
Jianjie Zhao ◽  
Xueqin Wang ◽  
Juan Jiang ◽  
Yao Ding ◽  
qinan wu

Abstract Background: CircRNAs feature prominently in breast cancer (BC) progression. This study was intended to investigate the role of hsa_circ_0000520 in BC progression.Methods: After the sample collection, quantitative real-time polymerase chain reaction (qRT-PCR) was conducted for quantifying the expressions of circ_0000520, miR-542-3p, and sphingosine-1-phosphate receptor 1 (S1PR1) mRNA. 5‐Ethynyl‐2′‐Deoxyuridine (EdU) and cell counting kit-8 (CCK-8) assays were used for measuring cell proliferation. Transwell assays were employed to detect cell migration and invasion. Western blotting was utilized for analyzing S1PR1 protein expression. Dual-luciferase reporter gene assay and RNA immunoprecipitation (RIP) assay were used to delve into the targeting relationship between circ_0000520 and miR-542-3p.Results: Circ_0000520 expression was markedly elevated in BC cell lines and tissues, and knockdown of circ_0000520 could inhibit BC cell multiplication, migration, and invasion. Circ_0000520 could target miR-542-3p to negatively regulate S1PR1 expression. S1PR1 overexpression plasmid could counteract the inhibitory effects of circ_0000520 knockdown on BC cell proliferation, migration, and invasion.Conclusion: Circ_0000520, as a cancer-promoting circRNA, participates in BC progression by regulating miR-542-3p/S1PR1 axis.


2021 ◽  
Vol 10 ◽  
Author(s):  
Jing Xu ◽  
Lei Liu ◽  
Ranran Ma ◽  
Yawen Wang ◽  
Xu Chen ◽  
...  

ObjectiveThe aim of this study was to investigate the role of KIF26A in breast cancer.MethodqRT-PCR and immunohistochemistry were conducted to explore KIF26A expression and functional contribution to breast cancer development. MTS, EDU, colony formation assays, and flow cytometry analysis were conducted to assess cell proliferation characteristics and cell cycle progression. A series of 5′-flanking region deletion plasmids and mutating the binding site, with the luciferase reporter assay, were used to identify the core promotor region of KIF26A. The prediction by software and construction of the transcriptional factor plasmids were used to identify the transcriptional factor. Chromatin immunoprecipitation assay could demonstrate transcriptional factor directly binding to the KIF26A promoter. Human Genome Oligo Microarray Assay and gene ontology (GO) and pathway analyses were used to predict the downstream pathway.ResultsOur results showed that in breast cancer tissues, elevated KIF26A expression was significantly correlated with lymph node metastasis. KIF26A could promote proliferation and G0/G1 phase cell cycle progression in breast cancer cells. The core promoter region of the human KIF26A gene was located upstream of the transcription start site at position −395 to −385. The transcriptional factor E2F1 was shown to activate KIF26A expression. Furthermore, KIF26A was shown to inhibit the expression of p21, then activate CDK–RB–E2Fs pathway. The elevated E2F1 can activate the cell cycle progression and the KIF26A expression, forming feedback loop.ConclusionsThe present study demonstrated that KIF26A, directly upregulated by E2F1, promoted cell proliferation and cell cycle progression via CDK–RB–E2Fs feedback loop in breast cancer.


2020 ◽  
Author(s):  
Gaowu Hu ◽  
Wei Peng ◽  
Yongqing Cao

Abstract Background: Currently, more and more circular RNAs (circRNAs) have been identified to exert their functions in tumor progression, including colorectal cancer (CRC). However, the role of circSEC24A (circ_0003528) in CRC remains unknown.Methods: Quantitative real-time polymerase chain reaction (qRT-PCR) was conducted to determine the levels of circSEC24A, SEC24A and microRNA-488-3p (miR-488-3p). The characterization of circSEC24A was investigated by Actinomycin D and RNase R digestion assays. 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide (MTT) assay was used to assess cell proliferation. Flow cytometry analysis was adopted for cell apoptosis and cell cycle process. Transwell assay was employed to evaluate cell migration and invasion. Western blot assay was performed to determine protein levels. Dual-luciferase reporter assay was utilized to explore the relationship between miR-488-3p and circSEC24A or transmembrane protein 106B (TMEM106B). Murine xenograft model was constructed to explore the effect of circSEC24A in vivo .Results: CircSEC24A level was increased in CRC tissues and cells. CircSEC24A deficiency impeded cell proliferation, cell cycle process, migration and invasion and induced apoptosis in CRC cells in vitro and blocked tumorigenesis in vivo . MiR-488-3p was a target of circSEC24A and miR-488-3p was downregulated in CRC tissues and cells. The inhibitory effect of circSEC24A silencing on CRC cell progression was restored by miR-488-3p inhibition. Moreover, TMEM106B could be negatively regulated by miR-488-3p via acting as a downstream gene of miR-488-3p. MiR-488-3p overexpression decelerated CRC cell progression by targeting TMEM106B.Conclusion: CircSEC24A facilitated CRC progression by regulating miR-488-3p/TMEM106B axis, which might provide a promising treatment approach for CRC.


Sign in / Sign up

Export Citation Format

Share Document