scholarly journals CT-scan based anatomical study as a guidance for infra-acetabular screw placement

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Quanyi Lu ◽  
Runtao Zhou ◽  
Shichang Gao ◽  
Anlin Liang ◽  
Mingming Yang ◽  
...  

Abstract Background The infra-acetabular corridor is quite narrow, which makes a challenge for the orthopedists to insert the screw. This study aimed to explore the relationship between the infra-acetabular corridor diameter (IACD) and the minimum thickness of medial acetabular wall (MTMAW), and to clarify the way of screw placement. Methods The Computed tomography (CT) data of 100 normal adult pelvises (50 males and 50 females respectively) were collected and pelvis three-dimensional (3D) reconstruction was performed by using Mimics software and the 3D model was imported into Geomagic Studio software. The perspective of acetabulum was carried out orienting from iliopubic eminence to ischial tuberosity and the IACD was measured by placing virtual screws which was vertical to the corridor transverse section of “teardrop”. The relationship between IACD and MTMAW was analyzed. When IACD was ≥5 mm, 3.5 mm all-in screws were placed. When IACD was < 5 mm, 3.5 mm in-out-in screws were placed. Results The IACD of males and females were (6.15 ± 1.24) mm and (5.42 ± 1.01) mm and the MTMAW in males and females were (4.40 ± 1.23) mm and (3.60 ± 0.81) mm respectively. The IACD and MTMAW in males were significantly wider than those of females (P < 0.05), and IACD was positively correlated with MTMAW (r = 0.859), the regression equation was IACD = 2.111 + 0.917 MTMAW. In the all-in screw group, 38 cases (76%) were males and 33 cases (66%) were females respectively. The entry point was located at posteromedial of the apex of iliopubic eminence, and the posterior distance and medial distance were (8.03 ± 2.01) mm and (8.49 ± 2.68) mm respectively in males. As for females, those were (8.68 ± 2.35) mm and (8.87 ± 2.79) mm respectively. In the in-out-in screw group, 12 cases (24%) were males and 17 cases (34%) were females, respectively. The posterior distance and medial distance between the entry point and the apex of iliopubic eminence were (10.49 ± 2.58) mm and (6.17 ± 1.84) mm respectively in males. As for females, those were (10.10 ± 2.63) mm and (6.63 ± 1.49) mm respectively. The angle between the infra-acetabular screw and the sagittal plane was medial inclination (0.42 ± 6.49) °in males, lateral inclination (8.09 ± 6.33) °in females, and the angle between the infra-acetabular screw and the coronal plane was posterior inclination (54.06 ± 7.37) °. Conclusions The placement mode of the infra-acetabular screw (IAS) can be determined preoperatively by measuring the MTMAW in the CT axial layers. Compared with all-in screw, the in-out-in screw entry point was around 2 mm outwards and backwards, and closer to true pelvic rim.

2021 ◽  
Author(s):  
Quanyi Lu ◽  
Runtao Zhou ◽  
Shichang Gao ◽  
Anlin Liang ◽  
Mingming Yang ◽  
...  

Abstract Background: The infra-acetabular corridor is quite narrow, which makes a challenge for the orthopedists to insert the screw. This study aimed to explore the relationship between the infra-acetabular corridor diameter (IACD) and the minimum thickness of medial acetabular wall(MTMAW), and to clarify the way of screw placement. Methods: The Computed tomography (CT) data of 100 normal adult pelvises (50 males and 50 females respectively) were collected and pelvis three-dimensional(3D) reconstruction was performed by using Mimics software and the 3D model was imported into Geomagic Studio software. The perspective of acetabulum was carried out orienting from iliopubic eminence to ischial tuberosity and the IACD was measured by placing virtual screws which was vertical to the corridor transverse section of "teardrop". The relationship between IACD and MTMAW was analyzed. When IACD was ≥ 5 mm, 3.5mm all-in screws were placed. When IACD was < 5 mm, 3.5mm in-out-in screws were placed. Results: The IACD of males and females were (6.15 ± 1.24) mm and (5.42 ± 1.01) mm and the MTMAW in males and females were (4.40 ± 1.23) mm and (3.60 ± 0.81)mm respectively. The IACD and MTMAW in males were significantly wider than those of females (P < 0.05), and IACD was positively correlated with MTMAW (r = 0.859), the regression equation was IACD = 2.111 + 0.917 MTMAW. In the all-in screw group, 38 cases (76%) were males and 33 cases (66%) were females respectively. The entry point was located at posteromedial of the apex of iliopubic eminence, and the posterior distance and medial distance were (8.03±2.01)mm and (8.49±2.68)mm respectively in males. As for females, those were (8.68±2.35)mm and (8.87±2.79)mm respectively. In the in-out-in screw group, 12 cases (24%) were males and 17 cases (34%) were females, respectively. The posterior distance and medial distance between the entry point and the apex of iliopubic eminence were (10.49±2.58)mm and (6.17±1.84)mm respectively in males. As for females, those were (10.10±2.63)mm and (6.63±1.49)mm respectively. The angle between the infra-acetabular screw and the sagittal plane was medial inclination (0.42 ± 6.49) °in males, lateral inclination (8.09 ± 6.33) °in females, and the angle between the infra-acetabular screw and the coronal plane was posterior inclination (54.06 ± 7.37) °. Conclusions: The placement mode of the infra-acetabular screw(IAS) can be determined preoperatively by measuring the MTMAW in the CT axial layers. Compared with all-in screw, the in-out-in screw entry point was around 2mm outwards and backwards, and closer to true pelvic rim.


SICOT-J ◽  
2020 ◽  
Vol 6 ◽  
pp. 9
Author(s):  
Hatem Galal Said ◽  
Tarek Nabil Fetih ◽  
Hosam Elsayed Abd-Elzaher ◽  
Simon Martin Lambert

Introduction: Coracoid fractures have the potential to lead to inadequate shoulder function. Most coracoid base fractures occur with scapular fractures and the posterior approaches would be utilized for surgical treatment. We investigated the possibility of fixing the coracoid through the same approach without an additional anterior approach. Materials and methods: Multi-slice CT scans of 30 shoulders were examined and the following measurements were performed by an independent specialized radiologist: posterior coracoid screw entry point measured form infraglenoid tubercle, screw trajectory in coronal plane in relation to scapular spine and lateral scapular border, screw trajectory in sagittal plane in relation to glenoid face bisector line and screw length. We used the results from the CT study to guide postero-anterior coracoid screw insertion under fluoroscopic guidance on two fresh frozen cadaveric specimens to assess the reproducibility of accurate screw placement based on these parameters. We also developed a novel fluoroscopic projection, the anteroposterior (AP) coracoid view, to guide screw placement in the para-coronal plane. Results: The mean distance between entry point and the infraglenoid tubercle was 10.8 mm (range: 9.2–13.9, SD 1.36). The mean screw length was 52 mm (range: 46.7–58.5, SD 3.3). The mean sagittal inclination angle between was 44.7 degrees (range: 25–59, SD 5.8). The mean angle between screw line and lateral scapular border was 47.9 degrees (range: 34–58, SD 4.3). The mean angle between screw line and scapular spine was 86.2 degrees (range: 75–95, SD 4.9). It was easy to reproduce the screw trajectory in the para-coronal plane; however, multiple attempts were needed to reach the correct angle in the parasagittal plane, requiring several C-arm corrections. Conclusion: This study facilitates posterior fixation of coracoid process fractures and will inform the “virtual visualization” of coracoid process orientation.


2001 ◽  
Vol 95 (1) ◽  
pp. 88-92 ◽  
Author(s):  
Jay U. Howington ◽  
John J. Kruse ◽  
Deepak Awasthi

Object. The goal of this anatomical study was to investigate the surgical and radiographic anatomy of the C-2 pedicle in relation to transpedicular screw placement in occipitocervical stabilization and to establish anatomical guidelines for the placement of C-2 pedicle screws. Methods. The C-2 pedicles in 10 cadaveric spines were evaluated using both computerized tomography (CT) scanning and manual measurements. The specimens were scanned; the mediolateral and rostrocaudal angulations of each pedicle were measured, with the midline sagittal plane and the inferior endplate of the C-2 facet, respectively, as references, and values were recorded in 1° increments by using a digital goniometer. The height, width, and length of the pedicles were also measured on the CT scans. Based on these measurements in conjunction with direct visualization of the C-2 pedicle through the C1–2 interlaminar space pedicle screws were then placed. The distances from the screw entry point to the midline, C2–3 joint line, and the medial aspect of the vertebral artery were also measured. Repeated CT scanning was then performed to assess screw placement. The average pedicle height, width, and length measured 9.1 mm, 7.9 mm, and 16.6 mm, respectively, and the medial inclination and rostrocaudal angulation averaged 35.2° and 38.8°, respectively. The cortex of the pedicle was not violated in any of the 20 cadaveric specimens. Conclusions. Adequate preoperative imaging studies in conjunction with direct visualization of the C-2 pedicle make transpedicular fixation safe and effective.


2019 ◽  
Author(s):  
Bei Zhao ◽  
Weidong Mu

Abstract Background Screw placement directly for quadrilateral plate fractures of the acetabulum is very difficult. This study was performed to simulate the surgical procedure and try to obtain effective and safe screw angles through the middle window of ilioinguinal approach in Chinese patients. Methods We randomly collected the pelvic computed tomography (CT) scans of 50 adults. DICOM-formatted CT-scan images were imported into Mimics software. The three-dimensional reconstruction (3D) digital model of the semi-pelvic was established. In the coronal and sagittal planes, a 3.5 mm cylinder was used to simulate the pathway of the screw from the designated insertion point. The angles of insertion and intersex differences were explored by statistical analyses. Results The screws could be inserted via four angles: medial inclination, lateral inclination, anterior inclination and posterior inclination. The mean minimum medial inclination angle (MIMIA) of insertion point A was 4.96°±1.11° in males and 8.66°±3.40° in females, and the intersex difference was significant. The mean minimum medial inclination angle (MIMIA) of insertion point C was -5.31°±3.69° in males and 1.75°±8.95° in females, and the intersex difference was significant. There were no differences in all the angles between males and females in insertion point B. Conclusions Preoperative measurement and calculation by digital tools before the screw placement for quadrilateral plate fractures of the acetabulum are feasible. Double cortical screws could be placed safely through the middle window of ilioinguinal approach to increase the stability of acetabulum.


2020 ◽  
Author(s):  
Bei Zhao ◽  
Zhongye Sun ◽  
Wei Zhang ◽  
Zhongbao Xu ◽  
Xiaofei Yang ◽  
...  

Abstract Background Direct screw placement for quadrilateral plate fractures in the danger zone of the acetabulum is very difficult. This study was performed to simulate the surgical procedure and try to obtain effective and safe screw angles through the middle window of the ilioinguinal approach in Chinese patients. Methods We randomly collected the pelvic computed tomography (CT) scans of 50 adults. DICOM-formatted CT-scan images were imported into Mimics software. The three-dimensional reconstruction (3D) digital model of the semi-pelvi s was established. A 3.5 mm cylinder was used to simulate the pathway of the screw from the designated insertion point . The angles of insertion and intersex differences were explored by statistical analyses. Results The screws could be inserted via three angles: medial inclination , anterior inclination and posterior inclination. The mean minimum medial inclination angle (MIMIA) of insertion point A was 4.96°±1.11° in males and 8.66°±3.40° in females, and the intersex difference was significant. The mean minimum medial inclination angle (MIMIA) of insertion point B was -5.31°±3.69° in males and 1.75°±8.95° in females, and the intersex difference was significant. There were no differences between any of the angles for males and females at insertion point O. Conclusions Preoperative measurement and calculation by digital tools before screw placement for quadrilateral plate fractures of the acetabulum are feasible. Double cortical screws could be placed safely in the danger zone through the middle window of the ilioinguinal approach to increase the stability of the acetabulum.


2020 ◽  
Author(s):  
Dingli Xu ◽  
Haijiao Mao ◽  
Yang Wang ◽  
Kaifeng Gan ◽  
Weihu Ma

Abstract Background: Anterior occipital condyle screw (AOCS) could be a feasible technique apply to the reconstruction of craniovertebral junction. This study was to analyze the feasibility of AOCS.Method: The craniovertebral junction computed tomography (CT) scans of 40 adults were enrolled and imported into Mimics software. Then the three-dimensional reconstruction digital model of craniovertebral junction were established to determine entry point, insertion angle and screw’s trajectory. After AOCS inserted into ten human cadaver spine specimens, CT scans were performed to verify the location between screws and important structures. Result: The optimal entry point is located caudally and medial to the ventral of occipital condyle. The optimal trajectory is in inclination angle (5.9°±3.4°) in the sagittal plane and diverge angle (26.7°±6.0°) in the axial plane with the screw length around 21.6±1.2mm. There were no screws invaded into hypoglossal canal and vertebral artery in all specimens.Conclusion: AOCS fixation is a feasible novel technique for anterior craniovertebral junction reconstruction, and it could be an effective alternative operation for anterior reconstruction with titanium mesh cage.


2018 ◽  
Vol 128 (4) ◽  
pp. 1250-1257 ◽  
Author(s):  
Clemens Raabe ◽  
Jens Fichtner ◽  
Jürgen Beck ◽  
Jan Gralla ◽  
Andreas Raabe

OBJECTIVEFrontal ventriculostomy is one of the most frequent and standardized procedures in neurosurgery. However, many first and subsequent punctures miss the target, and suboptimal placement or misplacement of the catheter is common. The authors therefore reexamined the landmarks and rules to determine the entry point and trajectory with the best hit rate (HtR).METHODSThe authors randomly selected CT scans from their institution’s DICOM pool that had been obtained in 50 patients with normal ventricular and skull anatomy and without ventricular puncture. Using a 5 × 5–cm frontal grid with 25 entry points referenced to the bregma, the authors examined trajectories 1) perpendicular to the skull, 2) toward classic facial landmarks in the coronal and sagittal planes, and 3) toward an idealized target in the middle of the ipsilateral anterior horn (ILAH). Three-dimensional virtual reality ventriculostomies were simulated for these entry points; trajectories and the HtRs were recorded, resulting in an investigation of 8000 different virtual procedures.RESULTSThe best HtR for the ILAH was 86% for an ideal trajectory, 84% for a landmark trajectory, and 83% for a 90° trajectory, but only at specific entry points. The highest HtRs were found for entry points 3 or 4 cm lateral to the midline, but only in combination with a trajectory toward the contralateral canthus; and 1 or 2 cm lateral to the midline, but only paired with a trajectory toward the nasion. The same “pairing” exists for entry points and trajectories in the sagittal plane. For perpendicular (90°) trajectories, the best entry points were at 3–5 cm lateral to the midline and 3 cm anterior to the bregma, or 4 cm lateral to the midline and 2 cm anterior to the bregma.CONCLUSIONSOnly a few entry points offer a chance of a greater than 80% rate of hitting the ILAH, and then only in combination with a specific trajectory. This “pairing” between entry point and trajectory was found both for landmark targeting and for perpendicular trajectories, with very limited variability. Surprisingly, the ipsilateral medial canthus, a commonly reported landmark, had low HtRs, and should not be recommended as a trajectory target.


2016 ◽  
Vol 25 (5) ◽  
pp. 572-579 ◽  
Author(s):  
Jinsong Zhou ◽  
Alejandro A. Espinoza Orías ◽  
Xia Kang ◽  
Jade He ◽  
Zhihai Zhang ◽  
...  

OBJECTIVE The segmental occipital condyle screw (OCS) is an alternative fixation technique in occipitocervical fusion. A thorough morphological study of the occipital condyle (OC) is critical for OCS placement. The authors set out to introduce a more precise CT-based method for morphometric analysis of the OC as it pertains to the placement of the segmental OCS, and they describe a novel preoperative simulation method for screw placement. Two new clinically relevant parameters, the height available for the OCS and the warning depth, are proposed. METHODS CT data sets from 27 fresh-frozen human cadaveric occipitocervical spines were used. All measurements were performed using a commercially available 3D reconstruction software package. The length, width, and sagittal angle of the condyle were measured in the axial plane at the base of the OC. The height of the OC and the height available for the segmental OCS were measured in the reconstructed oblique sagittal plane, fitting the ideal trajectory of the OCS recommended in the literature. The placement of a 3.5-mm-diameter screw that had the longest length of bicortical purchase was simulated into the OC in the oblique sagittal plane, with the screw path not being blocked by the occiput and not violating the hypoglossal canal cranially or the atlantooccipital joint caudally. The length of the simulated screw was recorded. The warning depth was measured as the shortest distance from the entry point of the screw to the posterior border of the hypoglossal canal. RESULTS The mean length and width of the OC were found to be larger in males: 22.2 ± 1.7 mm and 12.1 ± 1.0 mm, respectively, overall (p < 0.0001 for both). The mean sagittal angle was 28.0° ± 4.9°. The height available for the OCS was significantly less than the height of the OC (6.2 ± 1.3 mm vs 9.4 ± 1.5 mm, p < 0.0001). The mean screw length (19.3 ± 1.9 mm) also presented significant sex-related differences: male greater than female (p = 0.0002). The mean warning depth was 7.5 ± 1.7 mm. In 7.4% of the samples, although the height of the OC was viable, the height available for the OCS was less than 4.5 mm, thus making screw placement impractical. For these cases, a new preoperative simulation method of the OCS placement was proposed. In 92.6% of the samples that could accommodate a 3.5-mm-diameter screw, 24.0% showed that the entry point of the simulated screw was covered by a small part of the C-1 posterosuperior joint rim. CONCLUSIONS The placement of the segmental OCS is feasible in most cases, but a thorough preoperative radiological analysis is essential and cannot be understated. The height available for the OCS is a more clinically relevant and precise parameter than the height of the OC to enable proper screw placement. The warning depth may be helpful for the placement of the OCS.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Magdalena Zawadka ◽  
Jakub Smolka ◽  
Maria Skublewska-Paszkowska ◽  
Edyta Lukasik ◽  
Aleksandra Bys ◽  
...  

Abstract The purpose of this study is to compare recreationally physically active females and males with regard to spine, pelvis and lower limb joints peak angles in each plane of motion during a single leg squat (SLS). The second aim is to investigate the relationship between kinematics and SLS depth in females and males. Fifty-eight healthy, young adults performed 5 repetitions of a single right leg squat to maximal depth while keeping their balance. Kinematic data were obtained using an optical motion capture system. At the hip, greater adduction and greater internal rotation were observed in females than in males. Females had more extended spines and less outward bended knees throughout the SLS than did men. In males, squat depth was significantly, positively correlated with the maximal angle of the ankle (r = 0.60, p < 0.001), the knee (r = 0.87, p < 0.001), the hip (r = 0.73, p < 0.001) and the pelvis (r = 0.40, p = 0.02) in the sagittal plane. A positive significant correlation was found between SLS depth and maximal angle of the knee (r = 0.88, p < 0.001) and the ankle (r = 0.53, p = 0.01) in the sagittal plane in females. Males and females used different motor strategies at all levels of the kinematic chain during SLS.


Sign in / Sign up

Export Citation Format

Share Document