scholarly journals Application effect of computer-aided design combined with three-dimensional printing technology in autologous tooth transplantation: a retrospective cohort study

2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Shuang Han ◽  
Hui Wang ◽  
Jue Chen ◽  
Jihong Zhao ◽  
Haoyan Zhong

Abstract Background The activity of donor periodontal membrane is the key factor of autologous tooth healing. The application of digital aided design, 3D printing model and guide plate in autotransplantation of tooth (ATT) is expected to reduce the damage of periodontal membrane and preserve the activity of periodontal membrane, so as to improve the success rate of ATT. This study tried to prove the role of digital technology in improving the success rate of ATT, although there are differences in model accuracy in practice. Methods We included 41 tooth autotransplantation cases which assisted by 3D-printed donor models and surgical guides and divided them into two groups in accordance with whether the donor tooth could be placed successfully after the preparation of alveolar socket guided by the model tooth. Then, we compared and analyzed the preparation time of alveolar socket, extra-alveolar time, and number of positioning trials of the donor tooth between the two groups. We also included a comparison of the in vitro time of the donor tooth with that of 15 min. The incidence of complications was included in the prognostic evaluation. Results The mean preparation time of the alveolar socket, mean extra-alveolar time of donor tooth, and mean number of positioning trials with donor tooth of 41 cases were 12.73 ± 6.18 min, 5.56 ± 3.11 min, and 2.61 ± 1.00, respectively. The group wherein the donor tooth cannot be placed successfully (15.57 ± 6.14 min, 7.29 ± 2.57 min) spent more preparation time of alveolar socket and extra-alveolar time than the group wherein the donor tooth can be placed successfully (9.75 ± 4.73 min, 3.75 ± 2.57 min). The number of positioning trials with the donor tooth of the group wherein the donor tooth cannot be placed successfully (3.19 ± 0.75) was higher than that of the other group (2.00 ± 0.86). There was no significant difference in survival rates between the two groups. Conclusions Compared with the traditional tooth autotransplantation, the introduction of computer-aided design combined with 3D printing of the model tooth and surgical guides evidently shortens the preparation time of the alveolar socket and the extra-alveolar time of the donor tooth and reduces the number of positioning trials with the donor tooth regardless of the shape deviation between the model and actual teeth.

2021 ◽  
Author(s):  
Shuang Han ◽  
Hui Wang ◽  
Jue Chen ◽  
Jihong Zhao ◽  
Haoyan Zhong

Abstract Background:To examine the effectiveness of computer-aided design combined with the 3D printing technology in autotransplantation of teeth by using retrospective analysis.Methods: We divided 41 tooth autotransplantation cases which assisted by 3D-printed donor models and surgical guides into two groups in accordance with whether the donor tooth could be placed successfully after the preparation of alveolar socket guided by the model tooth. Then, we compared and analyzed the preparation time of alveolar socket, extra-alveolar time, and number of positioning trials of the donor tooth between the two groups. We also included a comparison of the in vitro time of the donor tooth with that of 15 min. The incidence of complications was included in the prognostic evaluation.Results: The mean preparation time of the alveolar socket, mean extra-alveolar time of donor tooth, and mean number of positioning trials with donor tooth of 41 cases were 12.73 ± 6.18 min, 5.56 ± 3.11 min, and 2.61 ± 1.00, respectively. The group wherein the donor tooth cannot be placed successfully (15.57 ± 6.14 min, 7.29 ± 2.57 min) spent more preparation time of alveolar socket and extra-alveolar time than the group wherein the donor tooth can be placed successfully (9.75 ± 4.73 min, 3.75 ± 2.57 min). The number of positioning trials with the donor tooth of the group wherein the donor tooth cannot be placed successfully (3.19±0.75) was higher than that of the other group (2.00 ± 0.86). Conclusions: Compared with the traditional tooth autotransplantation, the introduction of computer-aided design combined with 3D printing of the model tooth and surgical guides evidently shortens the preparation time of the alveolar socket and the extra-alveolar time of the donor tooth and reduces the number of positioning trials with the donor tooth regardless of the shape deviation between the model and actual teeth.


2021 ◽  
pp. 97-110
Author(s):  
V.V. Batrakov ◽  
A.I. Krylov ◽  
V.N. Saev ◽  
B.N. Nefyodov ◽  
V.M. Novichkov ◽  
...  

The paper presents space simulators (SS), types of instrumentation equipment installed on the workplaces of the space simulators operators (SSOPW), multi-functional display panel (MFDP), computer-aided design (CAD) tools, 3D printing technologies.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Chenxi Huang ◽  
Yisha Lan ◽  
Sirui Chen ◽  
Qing Liu ◽  
Xin Luo ◽  
...  

Despite the new ideas were inspired in medical treatment by the rapid advancement of three-dimensional (3D) printing technology, there is still rare research work reported on 3D printing of coronary arteries being documented in the literature. In this work, the application value of 3D printing technology in the treatment of cardiovascular diseases has been explored via comparison study between the 3D printed vascular solid model and the computer aided design (CAD) model. In this paper, a new framework is proposed to achieve a 3D printing vascular model with high simulation. The patient-specific 3D reconstruction of the coronary arteries is performed by the detailed morphological information abstracted from the contour of the vessel lumen. In the process of reconstruction which has 5 steps, the morphological details of the contour view of the vessel lumen are merged along with the curvature and length information provided by the coronary angiography. After comparing with the diameter of the narrow section and the diameter of the normal section in CAD models and 3D printing model, it can be concluded that there is a high correlation between the diameter of vascular stenosis measured in 3D printing models and computer aided design models. The 3D printing model has high-modeling ability and high precision, which can represent the original coronary artery appearance accurately. It can be adapted for prevascularization planning to support doctors in determining the surgical procedures.


2016 ◽  
Vol 17 (7) ◽  
pp. 530-535 ◽  
Author(s):  
Hamid Jalali ◽  
Zeinab Bahrani ◽  
Somayeh Zeighami

ABSTRACT Aim To achieve acceptable contour, color, esthetics, and occlusal relations, the porcelain may be subjected to several firing cycles. This study sought to assess the effect of multiple firing cycles on the microtensile bond strength (MTBS) of lithium disilicate-based ceramics (e.max Press, e.max CAD). Materials and methods IPS e.max computer aided design (CAD) cores were fabricated using CAD/(Computer Aided Manufacturing (CAM)) technology, and IPS e.max Press cores were fabricated using the heat-pressing technique (12 × 12 × 4 mm3). Cores in each group were divided into three subgroups based on the number of firing cycles (three, five, and seven cycles). After porcelain application, the samples were sectioned into microbars and a total of 20 sound microbars in each group were subjected to tensile load in a microtensile tester at a crosshead speed of 1 mm/minute. Microtensile bond strength of the core to the veneering porcelain was analyzed using one-way analysis of variance (ANOVA). Pairwise comparisons were made using the Tukey's test (p < 0.05). Results In the e.max CAD, the mean MTBS values were 22.07 ± 6.63, 34.68 ± 7.07, and 26.05 ± 10.29 MPa following three, five, and seven firing cycles respectively. These values for the e.max Press were 34.46 ± 9.28, 23.09 ± 5.02, and 31.26 ± 12.25 MPa respectively. There was significant difference in bond strength of e.max CAD (p < 0.003) and e.max Press (p < 0.002) based on the number of firing cycles. Conclusion Increasing the number of porcelain firing cycles decreased the bond strength of the core to the veneering porcelain in both ceramics. Clinical significance It is better to decrease the number of firing cycle as much as possible. How to cite this article Jalali H, Bahrani Z, Zeighami S. Effect of Repeated Firings on Microtensile Bond Strength of Bi-layered Lithium Disilicate Ceramics (e.max CAD and e.max Press). J Contemp Dent Pract 2016;17(7):530-535.


2020 ◽  
Author(s):  
Z. Erdos ◽  
P. Halswell ◽  
A. Matthews ◽  
B. Raymond

AbstractThe lack of commercially available low-cost laboratory spraying equipment for testing microbial control agents can hinder advancement in the field of biocontrol. This study presents an inexpensive, portable sprayer that is calibrated utilizing laboratory consumables. The computer aided design files are made available so that it is freely modifiable and can be used for machine routing or 3D printing. Bioassay data was obtained by spraying Myzus persicae with spores of entomopathogenic fungi. Observed variation in droplet deposition within tested pressure and volume settings, and spore deposition within sprayed concentrations were low. Bioassay results show reproducible mortality for the tested doses.


Healthcare ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 983
Author(s):  
Keunbada Son ◽  
Jung-Ho Lee ◽  
Kyu-Bok Lee

This study aimed to evaluate the intaglio surface trueness of interim dental crowns fabricated with three 3-dimensional (3D) printing and milling technologies. Dental crown was designated and assigned as a computer-aided design (CAD) reference model (CRM). Interim dental crowns were fabricated based on CRM using two types of 3D printer technologies (stereolithography apparatus and digital light processing) and one type of milling machine (n = 15 per technology). The fabricated interim dental crowns were obtained via 3D modeling of the intaglio surface using a laboratory scanner and designated as CAD test models (CTMs). The alignment and 3D comparison of CRM and CTM were performed based on the intaglio surface using a 3D inspection software program (Geomagic Control X). Statistical analysis was validated using one-way analysis of variance and Tukey HSD test (α = 0.05). There were significant differences in intaglio surface trueness between the three different fabrication technologies, and high trueness values were observed in the milling group (p < 0.05). In the milling group, there was a significant difference in trueness according to the location of the intaglio surface (p < 0.001). In the manufacturing process of interim dental crowns, 3D printing technologies showed superior and uniform manufacturing accuracy than milling technology.


Sign in / Sign up

Export Citation Format

Share Document