scholarly journals Identification of missing concepts in biomedical terminologies using sequence-based formal concept analysis

2021 ◽  
Vol 21 (S7) ◽  
Author(s):  
Fengbo Zheng ◽  
Rashmie Abeysinghe ◽  
Licong Cui

Abstract Background As biomedical knowledge is rapidly evolving, concept enrichment of biomedical terminologies is an active research area involving automatic identification of missing or new concepts. Previously, we prototyped a lexical-based formal concept analysis (FCA) approach in which concepts were derived by intersecting bags of words, to identify potentially missing concepts in the National Cancer Institute (NCI) Thesaurus. However, this prototype did not handle concept naming and positioning. In this paper, we introduce a sequenced-based FCA approach to identify potentially missing concepts, supporting concept naming and positioning. Methods We consider the concept name sequences as FCA attributes to construct the formal context. The concept-forming process is performed by computing the longest common substrings of concept name sequences. After new concepts are formalized, we further predict their potential positions in the original hierarchy by identifying their supertypes and subtypes from original concepts. Automated validation via external terminologies in the Unified Medical Language System (UMLS) and biomedical literature in PubMed is performed to evaluate the effectiveness of our approach. Results We applied our sequenced-based FCA approach to all the sub-hierarchies under Disease or Disorder in the NCI Thesaurus (19.08d version) and five sub-hierarchies under Clinical Finding and Procedure in the SNOMED CT (US Edition, March 2020 release). In total, 1397 potentially missing concepts were identified in the NCI Thesaurus and 7223 in the SNOMED CT. For NCI Thesaurus, 85 potentially missing concepts were found in external terminologies and 315 of the remaining 1312 appeared in biomedical literature. For SNOMED CT, 576 were found in external terminologies and 1159 out of the remaining 6647 were found in biomedical literature. Conclusion Our sequence-based FCA approach has shown the promise for identifying potentially missing concepts in biomedical terminologies.

2021 ◽  
Vol 179 (3) ◽  
pp. 295-319
Author(s):  
Longchun Wang ◽  
Lankun Guo ◽  
Qingguo Li

Formal Concept Analysis (FCA) has been proven to be an effective method of restructuring complete lattices and various algebraic domains. In this paper, the notion of contractive mappings over formal contexts is proposed, which can be viewed as a generalization of interior operators on sets into the framework of FCA. Then, by considering subset-selections consistent with contractive mappings, the notions of attribute continuous formal contexts and continuous concepts are introduced. It is shown that the set of continuous concepts of an attribute continuous formal context forms a continuous domain, and every continuous domain can be restructured in this way. Moreover, the notion of F-morphisms is identified to produce a category equivalent to that of continuous domains with Scott continuous functions. The paper also investigates the representations of various subclasses of continuous domains including algebraic domains and stably continuous semilattices.


Information ◽  
2018 ◽  
Vol 9 (9) ◽  
pp. 228 ◽  
Author(s):  
Zuping Zhang ◽  
Jing Zhao ◽  
Xiping Yan

Web page clustering is an important technology for sorting network resources. By extraction and clustering based on the similarity of the Web page, a large amount of information on a Web page can be organized effectively. In this paper, after describing the extraction of Web feature words, calculation methods for the weighting of feature words are studied deeply. Taking Web pages as objects and Web feature words as attributes, a formal context is constructed for using formal concept analysis. An algorithm for constructing a concept lattice based on cross data links was proposed and was successfully applied. This method can be used to cluster the Web pages using the concept lattice hierarchy. Experimental results indicate that the proposed algorithm is better than previous competitors with regard to time consumption and the clustering effect.


2020 ◽  
Vol 39 (3) ◽  
pp. 2783-2790
Author(s):  
Qian Hu ◽  
Ke-Yun Qin

The construction of concept lattices is an important research topic in formal concept analysis. Inspired by multi-granularity rough sets, multi-granularity formal concept analysis has become a new hot research issue. This paper mainly studies the construction methods of concept lattices in multi-granularity formal context. The relationships between concept forming operators under different granularity are discussed. The mutual transformation methods of formal concepts under different granularity are presented. In addition, the approaches of obtaining coarse-granularity concept lattice by fine-granularity concept lattice and fine-granularity concept lattice by coarse-granularity concept lattice are examined. The related algorithms for generating concept lattices are proposed. The practicability of the method is illustrated by an example.


2002 ◽  
Vol 41 (02) ◽  
pp. 160-167 ◽  
Author(s):  
M. Schnabel

Summary Objectives: The aim is to show the flexibility, adequateness, and generality of formal concept analysis (FCA) applied to expert systems in medicine. Methods: The basic idea of formal concept analysis is to look at a set of objects together with their attributes (formal context) under a definite mathematical view. This view leads to a mathematical structure, a complete lattice, which can be represented graphically. Results: Some examples show that this method is very general and can be used to describe diseases, relationships between diseases and findings, the inference process, and, among others, types of uncertainty. For many applications, the adequateness of this method, concerning the underlying semantics, can easily be made plausible. Conclusions: FCA can be used to analyze data that can be described by objects and attributes of any kind. The selected examples (diseases, patient cases, therapeutic decisions, rules) show the usefulness of this method. Although it is not difficult to transform the relevant semantics into a formal context in many cases, much more experience is necessary.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Tao Zhang ◽  
Hui Li ◽  
Wenxue Hong ◽  
Xiamei Yuan ◽  
Xinyu Wei

The calculation of formal concepts is a very important part in the theory of formal concept analysis (FCA); however, within the framework of FCA, computing all formal concepts is the main challenge because of its exponential complexity and difficulty in visualizing the calculating process. With the basic idea of Depth First Search, this paper presents a visualization algorithm by the attribute topology of formal context. Limited by the constraints and calculation rules, all concepts are achieved by the visualization global formal concepts searching, based on the topology degenerated with the fixed start and end points, without repetition and omission. This method makes the calculation of formal concepts precise and easy to operate and reflects the integrity of the algorithm, which enables it to be suitable for visualization analysis.


2013 ◽  
Vol 427-429 ◽  
pp. 2536-2539
Author(s):  
Xue Song Dai ◽  
Yuan Ma ◽  
Wen Xue Hong

Formal context is one of the research contents of formal concept analysis theory. In concept lattice, the attributes of the object are equivalent and there is no hierarchy. Facing to this problem, the equivalence relation which is on the attributes' set is defined and the corresponding σ operation is proposed. On this basis, the structure method of attribute hierarchical diagram is presented and attributes' sequences of associated objects are obtained. This conclusion enriches and extends the analysis method of the formal context.


2013 ◽  
Vol 11 (4) ◽  
pp. 97-111 ◽  
Author(s):  
K. Sumangali ◽  
Ch. Aswani Kumar

The objective of this paper is to apply Formal Concept Analysis (FCA) to identify the best open source Learning Management System (LMS) for an E-learning environment. FCA is a mathematical framework that represents knowledge derived from a formal context. In constructing the formal context, LMSs are treated as objects and their features as attributes. This context is analysed and classified into concepts based on the rules of FCA. The knowledge derived from the concepts and our analyses reveal that Moodle is exceptional, with more features when compared with other LMSs.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Huilai Zhi ◽  
Hao Chao

Recently, incomplete formal contexts have received more and more attention from the communities of formal concept analysis. Different from a complete context where the binary relations between all the objects and attribute are known, an incomplete formal context has at least a pair of object and attribute with a completely unknown binary relation. Partially known formal concepts use interval sets to indicate the incompleteness. Three-way formal concept analysis is capable of characterizing a target set by combining positive and negative attributes. However, how to describe target set, by pointing out what attributes it has with certainty and what attributes it has with possibility and what attributes it does not has with certainty and what attributes it does not has with possibility, is still an open problem. This paper combines the ideas of three-way formal concept analysis and partially known formal concepts and presents a framework of approximate three-way concept analysis. At first, approximate object-induced and attribute-induced three-way concept lattices are introduced, respectively. And then, the relationship between approximate three-way concept lattice and classical three-way concept lattice are investigated. Finally, examples are presented to demonstrate and verify the obtained results.


Author(s):  
Nelly Barbot ◽  
Laurent Miclet ◽  
Henri Prade

Analogical proportions are statements of the form “x is to y as z is to t”, where x, y, z, t are items of the same nature, or not. In this paper, we more particularly consider “relational proportions” of the form “object A has the same relationship with attribute a as object B with attribute b”. We provide a formal definition for relational proportions, and investigate how they can be extracted from a formal context, in the setting of formal concept analysis.


2021 ◽  
Author(s):  
Yixuan Yang ◽  
Doo-Soon Park ◽  
Fei Hao ◽  
Sony Peng ◽  
Min-Pyo Hong ◽  
...  

Abstract In the era of artificial intelligence including the fourth industrial revolution, social networks analyzing is a significant topic in big data analysis. Clique detection is a state-of-the-art technique in social network structure mining, which is widely used in a particular social network like signed network. There are positive and negative relationships in signed networks which detect not only cliques or maximal cliques but also maximal balanced cliques.In this paper, two algorithms have been addressed to the problems. First, we modify three-way concept lattice algorithm using a modified formal context and supplement formal context to obtain an object-induced three-way concept lattice (OE-concept) to detect the maximal balanced cliques. Second, in order to improve the cost of memory and efficiency, we modify formal concept analysis algorithm by using modified formal context combine with supplement formal context to find the maximal balance cliques. Additionally, we utilized four real-world datasets to test our proposed approaches as well as the running time in the experimental section.


Sign in / Sign up

Export Citation Format

Share Document