scholarly journals Resource management framework using simulation modeling and multi-objective optimization: a case study of a front-end department of a public hospital in Thailand

2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Tanatorn Tanantong ◽  
Warut Pannakkong ◽  
Nittaya Chemkomnerd

Abstract Background The overcrowded patients, which cause the long waiting time in public hospitals, become significant problems that affect patient satisfaction toward the hospital. Particularly, the bottleneck usually happens at front-end departments (e.g., the triage and medical record department) as every patient is firstly required to visit these departments. The problem is mainly caused by ineffective resource management. In order to support decision making in the resource management at front-end departments, this paper proposes a framework using simulation and multi-objective optimization techniques considering both operating cost and patient satisfaction. Methods To develop the framework, first, the timestamp of patient arrival time at each station was collected at the triage and medical record department of Thammasat University Hospital in Thailand. A patient satisfaction assessment method was used to convert the time spend into a satisfaction score. Then, the simulation model was built from the current situation of the hospital and was applied scenario analyses for the model improvement. The models were verified and validated. The weighted max–min for fuzzy multi-objective optimization was done by minimizing the operating cost and maximizing the patient satisfaction score. The operating costs and patient satisfaction scores from various scenarios were statistically compared. Finally, a decision-making guideline was proposed to support suitable resource management at the front-end departments of the hospital. Result The three scenarios of the simulation model were built (i.e., a real situation, a one-stop service, and partially shared resources) and ensured to be verified and valid. The optimized results were compared and grouped into three situations which are (1) remain the same satisfaction score but decrease the cost (cost decreased by 2.8%) (2) remain the same satisfaction score but increase the cost (cost increased up to 80%) and (3) decrease the satisfaction score and decrease the cost (satisfaction decreased up to 82% and cost decreased up to 59%). According to the guideline, the situations 1 and 3 were recommended to use in the improvement and the situation 2 was rejected. Conclusion This research demonstrates the resource management framework for the front-end department of the hospital. The experimental results imply that the framework can be used to support the decision making in resource management and used to reduce the risk of applying a non-improvement model in a real situation.

2018 ◽  
Author(s):  
Ricardo Guedes ◽  
Vasco Furtado ◽  
Tarcísio Pequeno ◽  
Joel Rodrigues

UNSTRUCTURED The article investigates policies for helping emergency-centre authorities for dispatching resources aimed at reducing goals such as response time, the number of unattended calls, the attending of priority calls, and the cost of displacement of vehicles. Pareto Set is shown to be the appropriated way to support the representation of policies of dispatch since it naturally fits the challenges of multi-objective optimization. By means of the concept of Pareto dominance a set with objectives may be ordered in a way that guides the dispatch of resources. Instead of manually trying to identify the best dispatching strategy, a multi-objective evolutionary algorithm coupled with an Emergency Call Simulator uncovers automatically the best approximation of the optimal Pareto Set that would be the responsible for indicating the importance of each objective and consequently the order of attendance of the calls. The scenario of validation is a big metropolis in Brazil using one-year of real data from 911 calls. Comparisons with traditional policies proposed in the literature are done as well as other innovative policies inspired from different domains as computer science and operational research. The results show that strategy of ranking the calls from a Pareto Set discovered by the evolutionary method is a good option because it has the second best (lowest) waiting time, serves almost 100% of priority calls, is the second most economical, and is the second in attendance of calls. That is to say, it is a strategy in which the four dimensions are considered without major impairment to any of them.


Author(s):  
Cristina Johansson ◽  
Johan Ölvander ◽  
Micael Derelöv

In early design phases, it is vital to be able to screen the design space for a set of promising design alternatives for further study. This article presents a method able to balance several objectives of different mathematical natures, with high impact on the design choices. The method (MOSART) handles multi-objective optimization for safety and reliability trade-offs. The article focuses on optimization problem approach and processing of results as a base for decision-making. The output of the optimization step is the selection of specific system elements obtaining the best balance between the targets. However, what is a good base for decision can easily transform into too much information and overloading of the decision-maker. To solve this potential issue, from a set of Pareto optimal solutions, a smaller sub-set of selected solutions are visualized and filtered out using preference levels of the objectives, yielding a solid base for decision-making and valuable information on potential solutions. Trends were observed regarding each system element and discussed while processing the results of the analysis, supporting the decision of one final best solution.


Author(s):  
Amit K. Thakur ◽  
Santosh K. Gupta ◽  
Rahul Kumar ◽  
Nilanjana Banerjee ◽  
Pranava Chaudhari

Abstract Slurry polymerization processes using Zeigler–Natta catalysts are most widely used for the production of polyethylene due to their several advantages over other processes. Optimal operating conditions are required to obtain the maximum productivity of the polymer at minimal cost while ensuring operational safety in the slurry phase ethylene polymerization reactors. The main focus of this multi-objective optimization study is to obtain the optimal operating conditions corresponding to the maximization of productivity and yield at a minimal operating cost. The tuned reactor model has been optimized. The single objective optimization (SOO) and multi-objective optimization (MOO) problems are solved using non-dominating sorting genetic algorithm-II (NSGA-II). A complete range of Pareto optimal solutions are obtained to obtain the maximum productivity and polymer yield at different input costs.


Sign in / Sign up

Export Citation Format

Share Document