scholarly journals The mitochondrially-localized nucleoside diphosphate kinase D (NME4) is a novel metastasis suppressor

BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Marie-Lise Lacombe ◽  
Frederic Lamarche ◽  
Olivier De Wever ◽  
Teresita Padilla-Benavides ◽  
Alyssa Carlson ◽  
...  

Abstract Background Mitochondrial nucleoside diphosphate kinase (NDPK-D, NME4, NM23-H4) is a multifunctional enzyme mainly localized in the intermembrane space, bound to the inner membrane. Results We constructed loss-of-function mutants of NDPK-D, lacking either NDP kinase activity or membrane interaction and expressed mutants or wild-type protein in cancer cells. In a complementary approach, we performed depletion of NDPK-D by RNA interference. Both loss-of-function mutations and NDPK-D depletion promoted epithelial-mesenchymal transition and increased migratory and invasive potential. Immunocompromised mice developed more metastases when injected with cells expressing mutant NDPK-D as compared to wild-type. This metastatic reprogramming is a consequence of mitochondrial alterations, including fragmentation and loss of mitochondria, a metabolic switch from respiration to glycolysis, increased ROS generation, and further metabolic changes in mitochondria, all of which can trigger pro-metastatic protein expression and signaling cascades. In human cancer, NME4 expression is negatively associated with markers of epithelial-mesenchymal transition and tumor aggressiveness and a good prognosis factor for beneficial clinical outcome. Conclusions These data demonstrate NME4 as a novel metastasis suppressor gene, the first localizing to mitochondria, pointing to a role of mitochondria in metastatic dissemination.

2011 ◽  
Vol 195 (3) ◽  
pp. 417-433 ◽  
Author(s):  
Nam Hee Kim ◽  
Hyun Sil Kim ◽  
Xiao-Yan Li ◽  
Inhan Lee ◽  
Hyung-Seok Choi ◽  
...  

Snail1 is a zinc finger transcriptional repressor whose pathological expression has been linked to cancer cell epithelial–mesenchymal transition (EMT) programs and the induction of tissue-invasive activity, but pro-oncogenic events capable of regulating Snail1 activity remain largely uncharacterized. Herein, we demonstrate that p53 loss-of-function or mutation promotes cancer cell EMT by de-repressing Snail1 protein expression and activity. In the absence of wild-type p53 function, Snail1-dependent EMT is activated in colon, breast, and lung carcinoma cells as a consequence of a decrease in miRNA-34 levels, which suppress Snail1 activity by binding to highly conserved 3′ untranslated regions in Snail1 itself as well as those of key Snail1 regulatory molecules, including β-catenin, LEF1, and Axin2. Although p53 activity can impact cell cycle regulation, apoptosis, and DNA repair pathways, the EMT and invasion programs initiated by p53 loss of function or mutation are completely dependent on Snail1 expression. These results identify a new link between p53, miR-34, and Snail1 in the regulation of cancer cell EMT programs.


Author(s):  
Mirazkar D. Pandareesh ◽  
Vivek Hamse Kameshwar ◽  
Kullaiah K. Byrappa

: Prostate cancer is a multifactorial disease that mainly occurs due to the accumulation of somatic, genetic and epigenetic changes, resulting in the inactivation of tumor-suppressor genes and activation of oncogenes. Mutations in genes, specifically those that control cell growth and division or the repair of damaged DNA, make the cells grow and divide uncontrollably to form a tumor. The risk of developing prostate cancer depends upon the gene that has undergone the mutation. Identifying such genetic risk factors for prostate cancer pose a challenge for the researchers. Besides genetic mutations, many epigenetic alterations including DNA methylation, histone modifications (methylation, acetylation, ubiquitylation, sumoylation, and phosphorylation) nucleosomal remodelling, and chromosomal looping, have been significantly contributed to the onset of prostate cancer as well as the prognosis, diagnosis, and treatment of prostate cancer. Chronic inflammation also plays a major role in the onset and progression of human cancer, via. modifications in the tumor microenvironment by initiating epithelial-mesenchymal transition and remodelling the extracellular matrix. In this article, the authors present a brief history of the mechanisms and potential links between the genetic aberrations, epigenetic changes, inflammation and inflammasomes that are known to contribute to the prognosis of prostate cancer. Furthermore, the authors examine and discuss clinical potential of prostate carcinogenesis in relation to epigenetics and inflammation for its diagnosis and treatment.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 739
Author(s):  
Taeju Park

Crk and CrkL are cellular counterparts of the viral oncoprotein v-Crk. Crk and CrkL are overexpressed in many types of human cancer, correlating with poor prognosis. Furthermore, gene knockdown and knockout of Crk and CrkL in tumor cell lines suppress tumor cell functions, including cell proliferation, transformation, migration, invasion, epithelial-mesenchymal transition, resistance to chemotherapy drugs, and in vivo tumor growth and metastasis. Conversely, overexpression of tumor cells with Crk or CrkL enhances tumor cell functions. Therefore, Crk and CrkL have been proposed as therapeutic targets for cancer treatment. However, it is unclear whether Crk and CrkL make distinct or overlapping contributions to tumor cell functions in various cancer types because Crk or CrkL have been examined independently in most studies. Two recent studies using colorectal cancer and glioblastoma cells clearly demonstrated that Crk and CrkL need to be ablated individually and combined to understand distinct and overlapping roles of the two proteins in cancer. A comprehensive understanding of individual and overlapping roles of Crk and CrkL in tumor cell functions is necessary to develop effective therapeutic strategies. This review systematically discusses crucial functions of Crk and CrkL in tumor cell functions and provides new perspectives on targeting Crk and CrkL in cancer therapy.


Biomedicines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 965
Author(s):  
Grazia Maugeri ◽  
Agata Grazia D’Amico ◽  
Salvatore Saccone ◽  
Concetta Federico ◽  
Daniela Maria Rasà ◽  
...  

Pituitary adenylate cyclase-activating polypeptide (PACAP) exerts different effects in various human cancer. In glioblastoma (GBM), PACAP has been shown to interfere with the hypoxic micro-environment through the modulation of hypoxia-inducible factors via PI3K/AKT and MAPK/ERK pathways inhibition. Considering that hypoxic tumor micro-environment is strictly linked to angiogenesis and Epithelial–Mesenchymal transition (EMT), in the present study, we have investigated the ability of PACAP to regulate these events. Results have demonstrated that PACAP and its related receptor, PAC1R, are expressed in hypoxic area of human GBM colocalizing either in epithelial or mesenchymal cells. By using an in vitro model of GBM cells, we have observed that PACAP interferes with hypoxic/angiogenic pathway by reducing vascular-endothelial growth factor (VEGF) release and inhibiting formation of vessel-like structures in H5V endothelial cells cultured with GBM-conditioned medium. Moreover, PACAP treatment decreased the expression of mesenchymal markers such as vimentin, matrix metalloproteinase 2 (MMP-2) and matrix metalloproteinase 9 (MMP-9) as well as CD44 in GBM cells by affecting their invasiveness. In conclusion, our study provides new insights regarding the multimodal role of PACAP in GBM malignancy.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jie Wang ◽  
Zhiwei He ◽  
Jian Xu ◽  
Peng Chen ◽  
Jianxin Jiang

AbstractAn accumulation of evidence indicates that long noncoding RNAs are involved in the tumorigenesis and progression of pancreatic cancer (PC). In this study, we investigated the functions and molecular mechanism of action of LINC00941 in PC. Quantitative PCR was used to examine the expression of LINC00941 and miR-335-5p in PC tissues and cell lines, and to investigate the correlation between LINC00941 expression and clinicopathological features. Plasmid vectors or lentiviruses were used to manipulate the expression of LINC00941, miR-335-5p, and ROCK1 in PC cell lines. Gain or loss-of-function assays and mechanistic assays were employed to verify the roles of LINC00941, miR-335-5p, and ROCK1 in PC cell growth and metastasis, both in vivo and in vitro. LINC00941 and ROCK1 were found to be highly expressed in PC, while miR-335-5p exhibited low expression. High LINC00941 expression was strongly associated with larger tumor size, lymph node metastasis, and poor prognosis. Functional experiments revealed that LINC00941 silencing significantly suppressed PC cell growth, metastasis and epithelial–mesenchymal transition. LINC00941 functioned as a molecular sponge for miR-335-5p, and a competitive endogenous RNA (ceRNA) for ROCK1, promoting ROCK1 upregulation, and LIMK1/Cofilin-1 pathway activation. Our observations lead us to conclude that LINC00941 functions as an oncogene in PC progression, behaving as a ceRNA for miR-335-5p binding. LINC00941 may therefore have potential utility as a diagnostic and treatment target in this disease.


Open Medicine ◽  
2020 ◽  
Vol 15 (1) ◽  
pp. 921-931
Author(s):  
Juan Zhao ◽  
Xue-Bin Zeng ◽  
Hong-Yan Zhang ◽  
Jie-Wei Xiang ◽  
Yu-Song Liu

AbstractLong non-coding RNA forkhead box D2 adjacent opposite strand RNA 1 (FOXD2-AS1) has emerged as a potential oncogene in several tumors. However, its biological function and potential regulatory mechanism in glioma have not been fully investigated to date. In the present study, RT-qPCR was conducted to detect the levels of FOXD2-AS1 and microRNA (miR)-506-5p, and western blot assays were performed to measure the expression of CDK2, cyclinE1, P21, matrix metalloproteinase (MMP)7, MMP9, N-cadherin, E-cadherin and vimentin in glioma cells. A luciferase reporter assay was performed to verify the direct targeting of miR-506-5p by FOXD2-AS1. Subsequently, cell viability was analyzed using the CCK-8 assay. Cell migration and invasion were analyzed using Transwell and wound healing assays, respectively. The results demonstrated that FOXD2-AS1 was significantly overexpressed in glioma cells, particularly in U251 cells. Knockdown of FOXD2-AS1 in glioma cells significantly inhibited cell proliferation, migration, invasion and epithelial–mesenchymal transition (EMT) and regulated the expression of CDK2, cyclinE1, P21, MMP7 and MMP9. Next, a possible mechanism for these results was explored, and it was observed that FOXD2-AS1 binds to and negatively regulates miR-506-5p, which is known to be a tumor-suppressor gene in certain human cancer types. Furthermore, overexpression of miR-506-5p significantly inhibited cell proliferation, migration, invasion and EMT, and these effects could be reversed by transfecting FOXD2-AS1 into the cells. In conclusion, our data suggested that FOXD2-AS1 contributed to glioma proliferation, metastasis and EMT via competitively binding to miR-506-5p. FOXD2-AS1 may be a promising target for therapy in patients with glioma.


2021 ◽  
Vol 22 (11) ◽  
pp. 5543
Author(s):  
Jitka Soukupova ◽  
Andrea Malfettone ◽  
Esther Bertran ◽  
María Isabel Hernández-Alvarez ◽  
Irene Peñuelas-Haro ◽  
...  

(1) Background: The transforming growth factor (TGF)-β plays a dual role in liver carcinogenesis. At early stages, it inhibits cell growth and induces apoptosis. However, TGF-β expression is high in advanced stages of hepatocellular carcinoma (HCC) and cells become resistant to TGF-β induced suppressor effects, responding to this cytokine undergoing epithelial–mesenchymal transition (EMT), which contributes to cell migration and invasion. Metabolic reprogramming has been established as a key hallmark of cancer. However, to consider metabolism as a therapeutic target in HCC, it is necessary to obtain a better understanding of how reprogramming occurs, which are the factors that regulate it, and how to identify the situation in a patient. Accordingly, in this work we aimed to analyze whether a process of full EMT induced by TGF-β in HCC cells induces metabolic reprogramming. (2) Methods: In vitro analysis in HCC cell lines, metabolomics and transcriptomics. (3) Results: Our findings indicate a differential metabolic switch in response to TGF-β when the HCC cells undergo a full EMT, which would favor lipolysis, increased transport and utilization of free fatty acids (FFA), decreased aerobic glycolysis and an increase in mitochondrial oxidative metabolism. (4) Conclusions: EMT induced by TGF-β in HCC cells reprograms lipid metabolism to facilitate the utilization of FFA and the entry of acetyl-CoA into the TCA cycle, to sustain the elevated requirements of energy linked to this process.


2021 ◽  
Vol 17 (10) ◽  
pp. 1993-2002
Author(s):  
Haoran Yu ◽  
Chen Zhang ◽  
Wanpeng Li ◽  
Xicai Sun ◽  
Quan Liu ◽  
...  

To investigate the expression characteristics of long non-coding RNA SNHG14 in nasopharyngeal carcinoma (NPC) and its effects on epithelial-mesenchymal transition and development of nano-coated si-SNHG14 as an anti-tumor agent. The SNHG14 expression in cancerous and adjacent non-cancerous tissues was monitored using reverse transcriptionpolymerase chain reaction (RT-PCR). Gain- and loss-of-function experiments tested the regulation of SNHG14, miR- 5590-3p, and ZEB1 on PD-L1. The binding association between the above three factors was verified using bioinformatics analysis. EMT-related E-cadherin, N-cadherin, and Vimentin were tested using Western blot. Animal experiments in nude mice verified the function of SNHG14 in the EMT of NPC in vivo. The nano-coated si-SNHG14 was developed as an anti-tumor agent and was verified NPC cell in vitro. SNHG14 was upregulated in NPC tissues. Knocking down SNHG14 markedly inhibited the EMT of NPC. Additionally, the expression of ZEB1 was positively related to that of the SNHG14, while it was inversely correlated with that of miR-5590-3p. Moreover, ZEB1 transcription upregulated PD-L1 and promoted the EMT, while SNHG14 could accelerate the EMT of NPC in vivo by regulating the PD-1 and PD-L1. SNHG14-miR-5590- 3p-ZEB1 positively regulated PD-L1 and facilitate the EMT of NPC. Nano-coated si-SNHG14 significantly downregulated PD-L1 expression and decreased EMT.


2021 ◽  
Author(s):  
ZHU ZENG ◽  
Shengbo Han ◽  
Yang Wang ◽  
Yan Huang ◽  
Yuhang Hu ◽  
...  

Abstract Background: Nutrient deprivation is a distinct feature of the tumor microenvironment that plays a crucial role in various cancers. However, the contribution and regulatory mechanism of nutrient deprivation on metastasis of pancreatic cancer (PC) have not been identified. Methods: PC cells were treated with normal medium, glucose-depletion or glutamine-depletion medium to observe the epithelial-mesenchymal transition (EMT). RT-qPCR and western blot assay were applied to evaluate the alteration of mRNA and protein of zinc finger E-box binding homeobox 1 (ZEB1), a crucial EMT regulator factor. Co-IP assay was utilized for evaluating the interaction between AMP-activated protein kinase (AMPK) and ZEB1. LncRNA microarray was adopted to detect the potential lncRNA, which facilitates the association between AMPK and ZEB1. Gain- and loss-of-function experiments were performed to evaluate the roles of ZNFX1 antisense RNA 1 (ZFAS1) in EMT and metastasis of PC. Results: The present study reveals that nutrient deprivation including glucose and glutamine deprivation significantly induces EMT of PC cells, which is dependent on stabilization of ZEB1. We further discover that nutrient deprivation induces upregulation of lncRNA ZFAS1, which promotes the association between AMPK and ZEB1 to phosphorylate and stabilize ZEB1 protein. Notably, ZEB1 reciprocally promotes the transcription of ZFAS1 by binding to the promoter of ZFAS1, forming feedback with ZFAS1. Consistently, depletion of ZFAS1 obviously inhibits nutrient deprivation-induced EMT of PC cells and lung metastasis of PC in nude mice. Meanwhile, clinical data displays that ZFAS1 is overexpressed in PC tissues and correlated with high expression of ZEB1 and Vimentin (VIM), low expression of E-cadherin (E-cad), as well as poor prognosis in PC patients. Conclusions: Our study implicates that glucose and glutamine deprivation promotes EMT and metastasis of PC through lncRNA-mediated stabilization of ZEB1.


Sign in / Sign up

Export Citation Format

Share Document