scholarly journals First report of Serotype-1 Marek’s disease virus (MDV-1) with oncogenic form in backyard turkeys in Turkey: a molecular analysis study

2022 ◽  
Vol 18 (1) ◽  
Author(s):  
Hasan Ongor ◽  
Necati Timurkaan ◽  
Hasan Abayli ◽  
Burak Karabulut ◽  
Hakan Kalender ◽  
...  

Abstract Background Marek’s disease (MD) is a lymphoproliferative disease caused by Gallid alphaherpesvirus 2 (GaHV-2, MDV-1), which primarily affects chickens. However, the virus is also able to induce tumors and polyneuritis in turkeys, albeit less frequently than in chickens. Results This is the first study in Turkey reporting the molecular characterization of a MDV-1 strain detected in a flock of backyard turkeys exhibiting visceral lymphoma. Here, MEQ, vIL-8, pp38 and 132-bp tandem repeat regions, which are frequently preferred in the pathotyping of MDV-1, were examined. It was determined that the MEQ gene of MDV-1/TR-21/turkey strain obtained in the present study encoded 339 amino acids (1020 nt) and had four proline-rich repeat regions (PPPP). Based on the nucleotide sequence of the MEQ gene of the MDV-1/TR-21/turkey strain, a phylogenetic tree was created using the MEGA-X software with the Maximum Likelihood Method (in 1000 replicates). Our strain was highly identical (> 99.8) to the Italian/Ck/625/16, Polish (Polen5) and some Turkish (Layer-GaHV-2-02-TR-2017, Tr/MDV-1/19) MDV-1 strains. Also, nt and aa sequences of the MEQ gene of our strain were 99.1 and 99.41% identical to another Turkish strain (MDV/Tur/2019) originated from chickens. Sequence analysis of pp38 and vIL-8 genes also supported the above finding. The identity ratios of nucleotide and amino acid sequences of vIL-8 and pp38 genes of MDV-1/TR-21/turkey strain were 99.64–100% and 99.79–100%, respectively, when compared with those of the Polish strain. According to 132-bp tandem repeat PCR results, the MDV-1/TR-21/turkey strain had five copies. Conclusions These results suggested that the MDV-1/TR-21/turkey strain obtained from backyard turkeys can be either very virulent or very virulent plus pathotype, though experimental inoculation is required for precise pathotyping.

Virus Genes ◽  
2005 ◽  
Vol 31 (1) ◽  
pp. 73-80 ◽  
Author(s):  
Lucy F. Lee ◽  
Xiaoping Cui ◽  
Zhizhong Cui ◽  
Isabel Gimeno ◽  
Blanca Lupiani ◽  
...  

1992 ◽  
Vol 21 (1) ◽  
pp. 119-126 ◽  
Author(s):  
K. Imai ◽  
N. Yuasa ◽  
H. Iwakiri ◽  
K. Nakamura ◽  
H. Hihara ◽  
...  

2000 ◽  
Vol 74 (21) ◽  
pp. 10176-10186 ◽  
Author(s):  
T. Yamaguchi ◽  
S. L. Kaplan ◽  
P. Wakenell ◽  
K. A. Schat

ABSTRACT The QT35 cell line was established from a methylcholanthrene-induced tumor in Japanese quail (Coturnix coturnix japonica) (C. Moscovici, M. G. Moscovici, H. Jimenez, M. M. Lai, M. J. Hayman, and P. K. Vogt, Cell 11:95–103, 1977). Two independently maintained sublines of QT35 were found to be positive for Marek's disease virus (MDV)-like genes by Southern blotting and PCR assays. Sequence analysis of fragments of the ICP4, ICP22, ICP27, VP16, meq, pp14, pp38, open reading frame (ORF) L1, and glycoprotein B (gB) genes showed a strong homology with the corresponding fragments of MDV genes. Subsequently, a serotype 1 MDV-like herpesvirus, tentatively name QMDV, was rescued from QT35 cells in chicken kidney cell (CKC) cultures established from 6- to 9-day-old chicks inoculated at 8 days of embryonation with QT35 cells. Transmission electron microscopy failed to show herpesvirus particles in QT35 cells, but typical intranuclear herpesvirus particles were detected in CKCs. Reverse transcription-PCR analysis showed that the following QMDV transcripts were present in QT35 cells: sense and antisense meq, ORF L1, ICP4, and latency-associated transcripts, which are antisense to ICP4. A transcript of approximately 4.5 kb was detected by Northern blotting using total RNA from QT35 cells. Inoculation of QT35 cells with herpesvirus of turkeys (HVT)-infected chicken embryo fibroblasts (CEF) but not with uninfected CEF resulted in the activation of ICP22, ICP27, VP16, pp38, and gB. In addition, the level of ICP4 mRNA was increased compared to that in QT35 cells. The activation by HVT resulted in the production of pp38 protein. It was not possible to detect if the other activated genes were translated due to the lack of serotype 1-specific monoclonal antibodies.


Sign in / Sign up

Export Citation Format

Share Document