scholarly journals Effects of rumen-protected creatine pyruvate on blood biochemical parameters and rumen fluid characteristics in transported beef cattle

2022 ◽  
Vol 18 (1) ◽  
Author(s):  
Kang Mao ◽  
Guwei Lu ◽  
Yanjiao Li ◽  
Yitian Zang ◽  
Xianghui Zhao ◽  
...  

Abstract Background The fasting and stress associated with road transportation contributes to a lack of energy and a decline in the immune system of beef cattle. Therefore, it is essential for beef cattle to enhance energy reserves before transportation. Creatine pyruvate (CrPyr) is a new multifunctional nutrient that can provide both pyruvate and creatine, which are two intermediate products of energy metabolism. To investigate the effects of transport and rumen-protected (RP)-CrPyr on the blood biochemical parameters and rumen fluid characteristics of beef cattle, twenty male Simmental crossbred cattle (659 ± 16 kg) aged 18 months were randomly allocated to four groups (n = 5) using a 2 × 2 factorial arrangement with two RP-CrPyr supplemental levels (0 or 140 g/d) and two transport treatments (5 min or 12 h): T_CrPyr140, T_CrPyr0, NT_CrPyr140, and NT_CrPyr0. After feeding for 30 days, three cattle per treatment were slaughtered. Results Compared with nontransport, transport decreased the total antioxidant capacity, catalase activity, contents of IgA, interferon γ, interleukin-1β (IL-1β), and IL-6 in serum, and the amounts of total volatile fatty acids (TVFA), acetate, and butyrate in rumen (P < 0.05); increased the serum lipopolysaccharide (LPS) level, contents of rumen LPS and ammonia nitrogen (P < 0.05). RP-CrPyr supplementation decreased the levels of cortisol and LPS in serum and the butyrate concentration in the rumen of beef cattle compared with those in the unsupplemented groups (P < 0.05). RP-CrPyr and transport interaction had a significant effect on the contents of serum tumour necrosis factor-α, IL-6, LPS, ruminal pH, acetate content, and acetate/propionate (P < 0.05). In terms of ruminal bacterial composition, group T_CrPyr0 increased the Prevotella genus abundance compared with group NT_CrPyr0 (P < 0.05), while group T_CrPyr140 increased Firmicutes phylum abundance and decreased Bacteroidetes phylum and genus Prevotella abundance compared with group T_CrPyr0 (P < 0.05). Moreover, Bacteroidetes was positively correlated with serum LPS. Conclusions These results indicated that dietary supplementation with RP-CrPyr might be beneficial to alleviate transport stress by decreasing serum cortisol and LPS levels and promoting the restoration of the rumen natural flora.

Animals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2379
Author(s):  
Bobo Deng ◽  
Yinyin Chen ◽  
Xiaoxiao Gong ◽  
Yi Dai ◽  
Kang Zhan ◽  
...  

Bacillus megaterium is an ideal microecologics in the feed industry. BM1259 was already isolated from chicken manure and the whole-genome sequencing was also analyzed in our previous study. However, few studies concentrated on dietary supplementation with BM1259 in young ruminants and especially its effect on Holstein bull calves have not been reported. Hence, this experiment was conducted with the aim to evaluate the effects of BM1259 on growth performance, nutrient digestibility, rumen fermentation, and blood biochemical parameters in Holstein bull calves. Twenty-four healthy Holstein bull calves with the initial age of 90 days old and a similar body weight (115 ± 6.5 kg) were selected and randomly allocated into two groups with one Holstein bull calf in each pen (2.5 m × 2.2 m). Holstein bull calves in the control group (COG) were fed a basal total mixed ration (TMR), while experimental treatments (BMG) were fed with the TMR diet supplemented with 12 g/head/day of BM1259 powder (1 × 1010 cfu/g) separately. Results showed that (1) the average daily gain and dry matter intake of the BMG were significantly higher than those of the COG (p < 0.01), increased by 12.5% and 8.79%, respectively, during the 4–8 weeks after the addition of 12 g/head/day of BM1259; from 0 to 8 weeks, ADG (p < 0.05) and DMI (p < 0.05) in the BMG were significantly higher than those in the COG, increased by 14.9% and 6.04%, respectively. (2) At the end of the fourth week, the apparent digestibility of crude protein and neutral detergent fiber in the BMG was significantly higher than that in the COG (p < 0.05), increased by 5.97% and 6.70%, respectively; at the end of the eighth week, the apparent digestibility of crude protein and neutral detergent fiber was significantly higher than that of the COG (p < 0.01), increased by 5.88% and 10.26%, respectively. (3) At the end of the eighth week, the rumen fluid pH (p < 0.05), MCP (p < 0.05), and acetate (p < 0.05) in the BMG were significantly higher than those in the COG, increased by 9.03%, 19.68%, and 12.74%, respectively; at the end of the fourth and eighth week, NH3-N concentration in the BMG was significantly lower than that in the COG, with a decrease of 21.81% and 16.40%, respectively. (4) At the end of the fourth (p < 0.05) and eighth week (p < 0.05), the glutamate content of the rumen fluid of the Holstein bull calves in the BMG was significantly higher than that in the COG, increased by 13.21% and 14.32%, respectively; at the end of the fourth week, the contents of glutamate in the serum (p < 0.05), urine (p < 0.05), and feces (p < 0.05) of the Holstein bull calves in the BMG were significantly lower than those in the COG, decreased by 25.76%, 33.87%, and 9.23%, respectively; at the end of the eighth week, the contents of glutamate in the serum, urine, and feces of the Holstein bull calves in the BMG were significantly lower than those in the COG (p < 0.01), decreased by 26.69%, 27.94%, and 11.11%, respectively. (5) After adding 12 g/head/day of BM1259, the urine ammonia–nitrogen content of the BMG was extremely significantly lower than that of the COG at the end of the fourth and eighth week (p < 0.01), decreased by 54.60% and 40.31%, respectively. (6) After adding 12 g/head/day of BM1259, there was no significant effect on the level of blood biochemical parameters of the Holstein bull calves. This study demonstrates that BM1259 can be applied as a potential microecologics to improve growth performance, nutrient digestibility, rumen fermentation, and nitrogen utilization in Holstein bull calves.


Sign in / Sign up

Export Citation Format

Share Document