scholarly journals Respiratory system compliance at the same PEEP level is similar in COVID and non-COVID ARDS

2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Federica Fusina ◽  
Filippo Albani ◽  
Serena Crisci ◽  
Alessandro Morandi ◽  
Francesca Tansini ◽  
...  

Abstract Background The comparison of respiratory system compliance (Crs) between COVID and non-COVID ARDS patients has been the object of debate, but few studies have evaluated it when considering applied positive end expiratory pressure (PEEP), which is one of the known determinants of Crs itself. The aim of this study was to compare Crs taking into account the applied PEEP. Methods Two cohorts of patients were created: those with COVID-ARDS and those with non-COVID ARDS. In the whole sample the association between Crs and type of ARDS at different PEEP levels was adjusted for anthropometric and clinical variables. As secondary analyses, patients were matched for predicted functional residual capacity and the same association was assessed. Moreover, the association between Crs and type of ARDS was reassessed at predefined PEEP level of 0, 5, 10, and 15 cmH2O with a propensity score-weighted linear model. Results 367 patients were included in the study, 276 patients with COVID-ARDS and 91 with non-COVID ARDS. The association between Crs and type of ARDS was not significant in both the complete cohorts (p = 0.17) and in the matched cohorts (p = 0.92). This was true also for the propensity score weighted association at PEEP 5, 10 and 15 cmH2O, while it was statistically significant at PEEP 0 (with a median difference of 3 ml/cmH2O, which in our opinion is not clinically significant). Conclusions The compliance of the respiratory system is similar between COVID ARDS and non-COVID ARDS when calculated at the same PEEP level and while taking into account patients’ anthropometric characteristics.

Critical Care ◽  
2021 ◽  
Vol 25 (1) ◽  
Author(s):  
Davide Chiumello ◽  
Matteo Bonifazi ◽  
Tommaso Pozzi ◽  
Paolo Formenti ◽  
Giuseppe Francesco Sferrazza Papa ◽  
...  

Abstract Background We hypothesized that as CARDS may present different pathophysiological features than classic ARDS, the application of high levels of end-expiratory pressure is questionable. Our first aim was to investigate the effects of 5–15 cmH2O of PEEP on partitioned respiratory mechanics, gas exchange and dead space; secondly, we investigated whether respiratory system compliance and severity of hypoxemia could affect the response to PEEP on partitioned respiratory mechanics, gas exchange and dead space, dividing the population according to the median value of respiratory system compliance and oxygenation. Thirdly, we explored the effects of an additional PEEP selected according to the Empirical PEEP-FiO2 table of the EPVent-2 study on partitioned respiratory mechanics and gas exchange in a subgroup of patients. Methods Sixty-one paralyzed mechanically ventilated patients with a confirmed diagnosis of SARS-CoV-2 were enrolled (age 60 [54–67] years, PaO2/FiO2 113 [79–158] mmHg and PEEP 10 [10–10] cmH2O). Keeping constant tidal volume, respiratory rate and oxygen fraction, two PEEP levels (5 and 15 cmH2O) were selected. In a subgroup of patients an additional PEEP level was applied according to an Empirical PEEP-FiO2 table (empirical PEEP). At each PEEP level gas exchange, partitioned lung mechanics and hemodynamic were collected. Results At 15 cmH2O of PEEP the lung elastance, lung stress and mechanical power were higher compared to 5 cmH2O. The PaO2/FiO2, arterial carbon dioxide and ventilatory ratio increased at 15 cmH2O of PEEP. The arterial–venous oxygen difference and central venous saturation were higher at 15 cmH2O of PEEP. Both the mechanics and gas exchange variables significantly increased although with high heterogeneity. By increasing the PEEP from 5 to 15 cmH2O, the changes in partitioned respiratory mechanics and mechanical power were not related to hypoxemia or respiratory compliance. The empirical PEEP was 18 ± 1 cmH2O. The empirical PEEP significantly increased the PaO2/FiO2 but also driving pressure, lung elastance, lung stress and mechanical power compared to 15 cmH2O of PEEP. Conclusions In COVID-19 ARDS during the early phase the effects of raising PEEP are highly variable and cannot easily be predicted by respiratory system characteristics, because of the heterogeneity of the disease.


1988 ◽  
Vol 64 (1) ◽  
pp. 360-366 ◽  
Author(s):  
P. D. Sly ◽  
K. A. Brown ◽  
J. H. Bates ◽  
P. T. Macklem ◽  
J. Milic-Emili ◽  
...  

To examine the effects of changes in lung volume on the magnitude of maximal bronchoconstriction, seven anesthetized, paralyzed, tracheostomized cats were challenged with aerosolized methacholine (MCh) and respiratory system resistance (Rss) was measured at different lung volumes using the interrupter technique. Analysis of the pressure changes following end-inspiratory interruptions allowed us to partition Rss into two quantities with the units of resistance, one (Rinit) corresponding to the resistance of the airways and the other (Rdif) reflecting the viscoelastic properties of the tissues of the respiratory system as well as gas redistribution following interruption of flow. Rinit and Rdif were used to construct concentration-response curves to MCh. Lung volume was increased by the application of 5, 10, and 15 cmH2O of positive end-expiratory pressure. The curve for Rinit reached a plateau in all cats, demonstrating a limit to the degree of MCh-induced bronchoconstriction. The mean value of Rinit (cmH2O.ml-1.s) for the group under control conditions was 0.011 and rose to 0.058 after maximal bronchoconstriction; the volume at which the flow was interrupted was 11.5 +/- 0.5 (SE) ml/kg above functional residual capacity (FRC). It then fell progressively to 0.029 at 21.2 +/- 0.8 ml/kg above FRC, 0.007 at 35.9 +/- 1.3 ml/kg above FRC, and 0.005 at 52.0 +/- 1.8 ml/kg above FRC. Cutting either the sympathetic or parasympathetic branches of the vagi had no significant effect on the lung volume-induced changes in MCh-induced bronchoconstriction.(ABSTRACT TRUNCATED AT 250 WORDS)


Critical Care ◽  
2021 ◽  
Vol 25 (1) ◽  
Author(s):  
Lorenzo Ball ◽  
◽  
Chiara Robba ◽  
Lorenzo Maiello ◽  
Jacob Herrmann ◽  
...  

Abstract Background There is a paucity of data concerning the optimal ventilator management in patients with COVID-19 pneumonia; particularly, the optimal levels of positive-end expiratory pressure (PEEP) are unknown. We aimed to investigate the effects of two levels of PEEP on alveolar recruitment in critically ill patients with severe COVID-19 pneumonia. Methods A single-center cohort study was conducted in a 39-bed intensive care unit at a university-affiliated hospital in Genoa, Italy. Chest computed tomography (CT) was performed to quantify aeration at 8 and 16 cmH2O PEEP. The primary endpoint was the amount of alveolar recruitment, defined as the change in the non-aerated compartment at the two PEEP levels on CT scan. Results Forty-two patients were included in this analysis. Alveolar recruitment was median [interquartile range] 2.7 [0.7–4.5] % of lung weight and was not associated with excess lung weight, PaO2/FiO2 ratio, respiratory system compliance, inflammatory and thrombophilia markers. Patients in the upper quartile of recruitment (recruiters), compared to non-recruiters, had comparable clinical characteristics, lung weight and gas volume. Alveolar recruitment was not different in patients with lower versus higher respiratory system compliance. In a subgroup of 20 patients with available gas exchange data, increasing PEEP decreased respiratory system compliance (median difference, MD − 9 ml/cmH2O, 95% CI from − 12 to − 6 ml/cmH2O, p < 0.001) and the ventilatory ratio (MD − 0.1, 95% CI from − 0.3 to − 0.1, p = 0.003), increased PaO2 with FiO2 = 0.5 (MD 24 mmHg, 95% CI from 12 to 51 mmHg, p < 0.001), but did not change PaO2 with FiO2 = 1.0 (MD 7 mmHg, 95% CI from − 12 to 49 mmHg, p = 0.313). Moreover, alveolar recruitment was not correlated with improvement of oxygenation or venous admixture. Conclusions In patients with severe COVID-19 pneumonia, higher PEEP resulted in limited alveolar recruitment. These findings suggest limiting PEEP strictly to the values necessary to maintain oxygenation, thus avoiding the use of higher PEEP levels.


Author(s):  
Po-Lan Su ◽  
Wei-Chieh Lin ◽  
Yen-Fen Ko ◽  
Kuo-Sung Cheng ◽  
Chang-Wen Chen

Abstract Purpose The positive end-expiratory pressure (PEEP) level with best respiratory system compliance (Crs) is frequently used for PEEP selection in acute respiratory distress syndrome (ARDS) patients. On occasion, two similar best Crs (where the difference between the Crs of two PEEP levels is < 1 ml/cm H2O) may be identified during decremental PEEP titration. Selecting PEEP under such conditions is challenging. The aim of this study was to provide supplementary rationale for PEEP selection by assessing the global and regional ventilation distributions between two PEEP levels in this situation. Methods Eight ARDS cases with similar best Crs at two different PEEP levels were analyzed using examination-specific electrical impedance tomography (EIT) measures and airway stress index (SIaw). Five Crs were measured at PEEP values of 25 cm H2O (PEEP25), 20 cm H2O (PEEP20), 15 cm H2O (PEEPH), 11 cm H2O (PEEPI), and 7 cm H2O (PEEPL). The higher PEEP value of the two PEEPs with similar best Crs was designated as PEEPupper, while the lower designated as PEEPlower. Results PEEPH and PEEPI shared the best Crs in two cases, while similar Crs was found at PEEPI and PEEPL in the remaining six cases. SIaw was higher with PEEPupper as compared to PEEPlower (1.06 ± 0.10 versus 0.99 ± 0.09, p = 0.05). Proportion of lung hyperdistension was significantly higher with PEEPupper than PEEPlower (7.0 ± 5.1% versus 0.3 ± 0.5%, p = 0.0002). In contrast, proportion of recruitable lung collapse was higher with PEEPlower than PEEPupper (18.6 ± 4.4% versus 5.9 ± 3.7%, p < 0.0001). Cyclic alveolar collapse and reopening during tidal breathing was higher at PEEPlower than PEEPupper (34.4 ± 19.3% versus 16.0 ± 9.1%, p = 0.046). The intratidal gas distribution (ITV) index was also significantly higher at PEEPlower than PEEPupper (2.6 ± 1.3 versus 1.8 ± 0.7, p = 0.042). Conclusions PEEPupper is a rational selection in ARDS cases with two similar best Crs. EIT provides additional information for the selection of PEEP in such circumstances.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Michal Stankiewicz-Rudnicki ◽  
Wojciech Gaszynski ◽  
Tomasz Gaszynski

Introduction. The aim of the study was to assess changes of regional ventilation distribution at the level of the 3rd intercostal space in the lungs of morbidly obese patients as a result of general anaesthesia and laparoscopic surgery as well as the relation of these changes to lung mechanics. We also wanted to determine if positive end-expiratory pressure of 10 cm H2O prevents the expected atelectasis in the morbidly obese patients during general anaesthesia.Materials and Methods. 49 patients completed the examination and were randomized to 2 groups: ventilated without positive end-expiratory pressure (PEEP 0) and with PEEP of 10 cm H2O (PEEP 10) preceded by a recruitment maneuver with peak inspiratory pressure of 40 cm H2O. Impedance Ratio (IR) was utilized to examine ventilation distribution changes as a result of anaesthesia, pneumoperitoneum, and change of body position. We also analyzed intraoperative respiratory mechanics and pulse oximetry values.Results.In both groups general anaesthesia caused a ventilation shift towards the nondependent lungs which was not further intensified after pneumoperitoneum. Reverse Trendelenburg position promoted homogeneous ventilation distribution. Respiratory system compliance was reduced after insufflation and improved after exsufflation of pneumoperitoneum. There were no statistically significant differences in ventilation distribution between the examined groups. Respiratory system compliance, plateau pressure, and pulse oximetry values were higher in PEEP 10.Conclusions.Changes of ventilation distribution in the obese do occur at cranial lung regions. During pneumoperitoneum alterations of ventilation distribution may not follow the direction of the changes of lung mechanics. In the obese patients PEEP level of 10 cm H2O preceded by a recruitment maneuver improves respiratory compliance and oxygenation but does not eliminate atelectasis induced by general anaesthesia.


Sign in / Sign up

Export Citation Format

Share Document