scholarly journals Genetic and process engineering strategies for enhanced recombinant N-glycoprotein production in bacteria

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Fenryco Pratama ◽  
Dennis Linton ◽  
Neil Dixon

Abstract Background The production of N-linked glycoproteins in genetically amenable bacterial hosts offers great potential for reduced cost, faster/simpler bioprocesses, greater customisation, and utility for distributed manufacturing of glycoconjugate vaccines and glycoprotein therapeutics. Efforts to optimize production hosts have included heterologous expression of glycosylation enzymes, metabolic engineering, use of alternative secretion pathways, and attenuation of gene expression. However, a major bottleneck to enhance glycosylation efficiency, which limits the utility of the other improvements, is the impact of target protein sequon accessibility during glycosylation. Results Here, we explore a series of genetic and process engineering strategies to increase recombinant N-linked glycosylation, mediated by the Campylobacter-derived PglB oligosaccharyltransferase in Escherichia coli. Strategies include increasing membrane residency time of the target protein by modifying the cleavage site of its secretion signal, and modulating protein folding in the periplasm by use of oxygen limitation or strains with compromised oxidoreductase or disulphide-bond isomerase activity. These approaches achieve up to twofold improvement in glycosylation efficiency. Furthermore, we also demonstrate that supplementation with the chemical oxidant cystine enhances the titre of glycoprotein in an oxidoreductase knockout strain by improving total protein production and cell fitness, while at the same time maintaining higher levels of glycosylation efficiency. Conclusions In this study, we demonstrate that improved protein glycosylation in the heterologous host could be achieved by mimicking the coordination between protein translocation, folding and glycosylation observed in native host such as Campylobacter jejuni and mammalian cells. Furthermore, it provides insight into strain engineering and bioprocess strategies, to improve glycoprotein yield and titre, and to avoid physiological burden of unfolded protein stress upon cell growth. The process and genetic strategies identified herein will inform further optimisation and scale-up of heterologous recombinant N-glycoprotein production.

2020 ◽  
Author(s):  
Fenryco Pratama ◽  
Dennis Linton ◽  
Neil Dixon

Abstract BackgroundThe production of N-linked glycoproteins in genetically amenable bacterial hosts offers great potential for reduced cost, faster/simpler bioprocesses, greater customisation and utility for distributed manufacturing of glycoconjugate vaccines and glycoprotein therapeutics. Efforts to optimize production hosts have included heterologous expression of glycosylation enzymes, metabolic engineering, use of alternative secretion pathways, and attenuation of gene expression. However, a major bottleneck to enhance glycosylation efficiency, which limits the utility of the other improvements is the impact of target protein sequon accessibility during glycosylation.ResultsHere, we explore a series genetic and process engineering strategies to increase recombinant N-linked glycosylation mediated by the Campylobacter-derived PglB oligosaccharyltransferase in Escherichia coli. Strategies include increasing membrane residency time of the target protein by modifying the cleavage site of its secretion signal, and modulating protein folding in the periplasm by use of oxygen limitation or strains with compromised oxidoreductases or disulphide-bond isomerase activity. These approaches could achieve up to 90% improvement in glycosylation efficiency. Furthermore, we also demonstrated that supplementation with the chemical oxidant cystine enhanced glycoprotein production and improved cell fitness in the oxidoreductase knock out strain.ConclusionsIn this study, we demonstrated that improved glycosylation in the heterologous host could be achieved by mimicking the coordination between protein translocation, folding and glycosylation observed in native such as Campylobacter jejuni and mammalian hosts. Furthermore, it provides insight into strain engineering and bioprocess strategy, to improve glycoprotein yield and to avoid physiological burden of unfolded protein stress to cell growth. The process and genetic strategies identified herein will inform further optimisation and scale-up of heterologous recombinant N-glycoprotein production


2020 ◽  
Author(s):  
Fenryco Pratama ◽  
Dennis Linton ◽  
Neil Dixon

BackgroundThe production of N-linked glycoproteins in genetically amenable bacterial hosts offers great potential for reduced cost, faster/simpler bioprocesses, greater customisation and utility for distributed manufacturing of glycoconjugate vaccines and glycoprotein therapeutics. Efforts to optimize production hosts have included heterologous expression of glycosylation enzymes, metabolic engineering, use of alternative secretion pathways, and attenuation of gene expression. However, a major bottleneck to enhance glycosylation efficiency, which limits the utility of the other improvements is the impact of target protein sequon accessibility during glycosylation.ResultsHere, we explore a series genetic and process engineering strategies to increase recombinant N-linked glycosylation mediated by the Campylobacter-derived PglB oligosaccharyltransferase in Escherichia coli. Strategies include increasing membrane residency time of the target protein by modifying the cleavage site of its secretion signal, and modulating protein folding in the periplasm by use of oxygen limitation or strains with compromised oxidoreductases or disulphide-bond isomerase activity. These approaches could achieve up to 90% improvement in glycosylation efficiency. Furthermore, we also demonstrated that supplementation with the chemical oxidant cystine enhanced glycoprotein production and improved cell fitness in the oxidoreductase knock out strain.ConclusionsIn this study, we demonstrated that improved glycosylation in the heterologous host could be achieved by mimicking the coordination between protein translocation, folding and glycosylation observed in native such as Campylobacter jejuni and mammalian hosts. Furthermore, it provides insight into strain engineering and bioprocess strategy, to improve glycoprotein yield and to avoid physiological burden of unfolded protein stress to cell growth. The process and genetic strategies identified herein will inform further optimisation and scale-up of heterologous recombinant N-glycoprotein production


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1497
Author(s):  
Pansong Zhang ◽  
Qiao Guo ◽  
Zhihua Wei ◽  
Qin Yang ◽  
Zisheng Guo ◽  
...  

Therapeutics that target the virulence of pathogens rather than their viability offer a promising alternative for treating infectious diseases and circumventing antibiotic resistance. In this study, we searched for anti-virulence compounds against Pseudomonas aeruginosa from Chinese herbs and investigated baicalin from Scutellariae radix as such an active anti-virulence compound. The effect of baicalin on a range of important virulence factors in P. aeruginosa was assessed using luxCDABE-based reporters and by phenotypical assays. The molecular mechanism of the virulence inhibition by baicalin was investigated using genetic approaches. The impact of baicalin on P. aeruginosa pathogenicity was evaluated by both in vitro assays and in vivo animal models. The results show that baicalin diminished a plenty of important virulence factors in P. aeruginosa, including the Type III secretion system (T3SS). Baicalin treatment reduced the cellular toxicity of P. aeruginosa on the mammalian cells and attenuated in vivo pathogenicity in a Drosophila melanogaster infection model. In a rat pulmonary infection model, baicalin significantly reduced the severity of lung pathology and accelerated lung bacterial clearance. The PqsR of the Pseudomonas quinolone signal (PQS) system was found to be required for baicalin’s impact on T3SS. These findings indicate that baicalin is a promising therapeutic candidate for treating P. aeruginosa infections.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alexander Pralow ◽  
Alexander Nikolay ◽  
Arnaud Leon ◽  
Yvonne Genzel ◽  
Erdmann Rapp ◽  
...  

AbstractHere, we present for the first time, a site-specific N-glycosylation analysis of proteins from a Brazilian Zika virus (ZIKV) strain. The virus was propagated with high yield in an embryo-derived stem cell line (EB66, Valneva SE), and concentrated by g-force step-gradient centrifugation. Subsequently, the sample was proteolytically digested with different enzymes, measured via a LC–MS/MS-based workflow, and analyzed in a semi-automated way using the in-house developed glyXtoolMS software. The viral non-structural protein 1 (NS1) was glycosylated exclusively with high-mannose structures on both potential N-glycosylation sites. In case of the viral envelope (E) protein, no specific N-glycans could be identified with this method. Nevertheless, N-glycosylation could be proved by enzymatic de-N-glycosylation with PNGase F, resulting in a strong MS-signal of the former glycopeptide with deamidated asparagine at the potential N-glycosylation site N444. This confirmed that this site of the ZIKV E protein is highly N-glycosylated but with very high micro-heterogeneity. Our study clearly demonstrates the progress made towards site-specific N-glycosylation analysis of viral proteins, i.e. for Brazilian ZIKV. It allows to better characterize viral isolates, and to monitor glycosylation of major antigens. The method established can be applied for detailed studies regarding the impact of protein glycosylation on antigenicity and human pathogenicity of many viruses including influenza virus, HIV and corona virus.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A141-A141
Author(s):  
Yumi Ohtani ◽  
Kayleigh Ross ◽  
Aditya Dandekar ◽  
Rashid Gabbasov ◽  
Michael Klichinsky

BackgroundWe have previously developed CAR-M as a novel cell therapy approach for the treatment of solid tumors.1 CAR-M have the potential to overcome key challenges that cell therapies face in the solid tumor setting – tumor infiltration, immunosuppression, lymphocyte exclusion – and can induce epitope spreading to overcome target antigen heterogeneity. While macrophages transduced with the adenoviral vector Ad5f35 (Ad CAR-M) traffic to tumors, provide robust anti-tumor activity, and recruit and activate T cells, we sought to identify a robust non-viral method of macrophage engineering in order to reduce the cost of goods, manufacturing complexity, and potential immunogenicity associated with viral vectors.MethodsAs innate immune cells, macrophages detect exogenous nucleic acids and respond with inflammatory and apoptotic programs. Thus, we sought to identify a means of mRNA delivery that avoids recognition by innate immune sensors. We screened a broad panel of mRNA encoding an anti-HER2 CAR comprising multiplexed 5’Cap and base modifications using an optimized and scalable electroporation approach and evaluated the impact of interferon-β priming on CAR-M phenotype and function.ResultsWe identified the optimal multiplexed mRNA modifications that led to maximal macrophage viability, transfection efficiency, intensity of CAR expression, and duration of expression. Non-viral HER2 CAR-M phagocytosed and killed human HER2+ tumor cells. Unlike Ad CAR-M, mRNA CAR-M were not skewed toward an M1 state by mRNA electroporation. Priming non-viral CAR-M with IFN-β induced a durable M1 phenotype, as shown by stable upregulation of numerous M1 markers and pathways. IFN-β priming significantly enhanced the anti-tumor activity of CAR but not control macrophages. IFN-β primed mRNA CAR-M were resistant to M2 conversion, maintaining an M1 phenotype despite challenge with various immunosuppressive factors, and converted bystander M2 macrophages toward M1. Interestingly, priming mRNA CAR-M with IFN-β significantly enhanced the persistence of CAR expression, overcoming the known issue of rapid mRNA turnover. RNA-seq analysis revealed that IFN-β priming affected pathways involved in increasing translation and decreasing RNA degradation in human macrophages.ConclusionsWe have established a novel, optimized non-viral CAR-M platform based on chemically modified mRNA and IFN-β priming. IFN-β priming induced a durable M1 phenotype, improved CAR expression, improved CAR persistence, led to enhanced anti-tumor function, and rendered resistance to immunosuppressive factors. This novel platform is amenable to scale-up, GMP manufacturing, and represents an advance in the development of CAR-M.ReferenceKlichinsky M, Ruella M, Shestova O, et al. Human chimeric antigen receptor macrophages for cancer immunotherapy. Nat Biotechnol 2020;38(8):947–953.


2021 ◽  
Vol 22 (6) ◽  
pp. 2941
Author(s):  
Marisa Pereira ◽  
Diana R. Ribeiro ◽  
Miguel M. Pinheiro ◽  
Margarida Ferreira ◽  
Stefanie Kellner ◽  
...  

Transfer RNA (tRNA) molecules contain various post-transcriptional modifications that are crucial for tRNA stability, translation efficiency, and fidelity. Besides their canonical roles in translation, tRNAs also originate tRNA-derived small RNAs (tsRNAs), a class of small non-coding RNAs with regulatory functions ranging from translation regulation to gene expression control and cellular stress response. Recent evidence indicates that tsRNAs are also modified, however, the impact of tRNA epitranscriptome deregulation on tsRNAs generation is only now beginning to be uncovered. The 5-methyluridine (m5U) modification at position 54 of cytosolic tRNAs is one of the most common and conserved tRNA modifications among species. The tRNA methyltransferase TRMT2A catalyzes this modification, but its biological role remains mostly unexplored. Here, we show that TRMT2A knockdown in human cells induces m5U54 tRNA hypomodification and tsRNA formation. More specifically, m5U54 hypomodification is followed by overexpression of the ribonuclease angiogenin (ANG) that cleaves tRNAs near the anticodon, resulting in accumulation of 5′tRNA-derived stress-induced RNAs (5′tiRNAs), namely 5′tiRNA-GlyGCC and 5′tiRNA-GluCTC, among others. Additionally, transcriptomic analysis confirms that down-regulation of TRMT2A and consequently m5U54 hypomodification impacts the cellular stress response and RNA stability, which is often correlated with tiRNA generation. Accordingly, exposure to oxidative stress conditions induces TRMT2A down-regulation and tiRNA formation in mammalian cells. These results establish a link between tRNA hypomethylation and ANG-dependent tsRNAs formation and unravel m5U54 as a tRNA cleavage protective mark.


Sexual Health ◽  
2017 ◽  
Vol 14 (1) ◽  
pp. 111 ◽  
Author(s):  
Graham Brown ◽  
William Leonard ◽  
Anthony Lyons ◽  
Jennifer Power ◽  
Dirk Sander ◽  
...  

Improvements in biomedical technologies, combined with changing social attitudes to sexual minorities, provide new opportunities for HIV prevention among gay and other men who have sex with men (GMSM). The potential of these new biomedical technologies (biotechnologies) to reduce HIV transmission and the impact of HIV among GMSM will depend, in part, on the degree to which they challenge prejudicial attitudes, practices and stigma directed against gay men and people living with HIV (PLHIV). At the structural level, stigma regarding gay men and HIV can influence the scale-up of new biotechnologies and negatively affect GMSM’s access to and use of these technologies. At the personal level, stigma can affect individual gay men’s sense of value and confidence as they negotiate serodiscordant relationships or access services. This paper argues that maximising the benefits of new biomedical technologies depends on reducing stigma directed at sexual minorities and people living with HIV and promoting positive social changes towards and within GMSM communities. HIV research, policy and programs will need to invest in: (1) responding to structural and institutional stigma; (2) health promotion and health services that recognise and work to address the impact of stigma on GMSM’s incorporation of new HIV prevention biotechnologies; (3) enhanced mobilisation and participation of GMSM and PLHIV in new approaches to HIV prevention; and (4) expanded approaches to research and evaluation in stigma reduction and its relationship with HIV prevention. The HIV response must become bolder in resourcing, designing and evaluating programs that interact with and influence stigma at multiple levels, including structural-level stigma.


2018 ◽  
Vol 10 (9) ◽  
pp. 3020 ◽  
Author(s):  
Esperanza Arnés ◽  
Carlos G. H. Díaz-Ambrona ◽  
Omar Marín-González ◽  
Marta Astier

Farmer field schools (FFSs) emerged in response to the gap left by the worldwide decline in agricultural extension services. With time, this methodology has been adapted to specific rural contexts to solve problems related to the sustainability of peasant-farming systems. In this study we draw upon empirical data regarding the peasant-farming system in the Nicaraguan highlands to evaluate whether FFSs have helped communities improve the sustainability of their systems and the food security of their residents using socioeconomic, environmental, and food and nutrition security (FNS) indicators. In order to appreciate the long-term impact, we studied three communities where FFSs were implemented eight, five, and three years ago, respectively, and we included participants and nonparticipants from each community. We found that FFSs have a gradual impact, as there are significant differences between participants and nonparticipants, and it is the community that first implemented FFSs that scores highest. The impact of FFSs is broad and long lasting for indicators related to participation, access to basic services, and conservation of natural resources. Finally, this paper provides evidence that FFSs have the potential to empower farmers; however, more attention needs to be paid to critical indicators like production costs and the use of external inputs in order to scale up their potential in the future.


2016 ◽  
Vol 53 (5) ◽  
pp. 43-53
Author(s):  
G. Klāvs ◽  
A. Kundziņa ◽  
I. Kudrenickis

Abstract Use of renewable energy sources (RES) might be one of the key factors for the triple win-win: improving energy supply security, promoting local economic development, and reducing greenhouse gas emissions. The authors ex-post evaluate the impact of two main support instruments applied in 2010-2014 – the investment support (IS) and the feed-in tariff (FIT) – on the economic viability of small scale (up to 2MWel) biogas unit. The results indicate that the electricity production cost in biogas utility roughly corresponds to the historical FIT regarding electricity production using RES. However, if in addition to the FIT the IS is provided, the analysis shows that the practice of combining both the above-mentioned instruments is not optimal because too high total support (overcompensation) is provided for a biogas utility developer. In a long-term perspective, the latter gives wrong signals for investments in new technologies and also creates unequal competition in the RES electricity market. To provide optimal biogas utilisation, it is necessary to consider several options. Both on-site production of electricity and upgrading to biomethane for use in a low pressure gas distribution network are simulated by the cost estimation model. The authors’ estimates show that upgrading for use in a gas distribution network should be particularly considered taking into account the already existing infrastructure and technologies. This option requires lower support compared to support for electricity production in small-scale biogas utilities.


2010 ◽  
Vol 188 (4) ◽  
pp. 515-526 ◽  
Author(s):  
Neena S. Rane ◽  
Oishee Chakrabarti ◽  
Lionel Feigenbaum ◽  
Ramanujan S. Hegde

Protein translocation into the endoplasmic reticulum is mediated by signal sequences that vary widely in primary structure. In vitro studies suggest that such signal sequence variations may correspond to subtly different functional properties. Whether comparable functional differences exist in vivo and are of sufficient magnitude to impact organism physiology is unknown. Here, we investigate this issue by analyzing in transgenic mice the impact of signal sequence efficiency for mammalian prion protein (PrP). We find that replacement of the average efficiency signal sequence of PrP with more efficient signals rescues mice from neurodegeneration caused by otherwise pathogenic PrP mutants in a downstream hydrophobic domain (HD). This effect is explained by the demonstration that efficient signal sequence function precludes generation of a cytosolically exposed, disease-causing transmembrane form of PrP mediated by the HD mutants. Thus, signal sequences are functionally nonequivalent in vivo, with intrinsic inefficiency of the native PrP signal being required for pathogenesis of a subset of disease-causing PrP mutations.


Sign in / Sign up

Export Citation Format

Share Document