scholarly journals CDK2-AP1 inhibits growth of breast cancer cells by regulating cell cycle and increasing docetaxel sensitivity in vivo and in vitro

2014 ◽  
Vol 14 (1) ◽  
Author(s):  
Xiangming He ◽  
Hua Xiang ◽  
Xiangyun Zong ◽  
Xuebing Yan ◽  
Yang Yu ◽  
...  

Oncotarget ◽  
2018 ◽  
Vol 9 (68) ◽  
pp. 33050-33050 ◽  
Author(s):  
Bhimashankar Gurushidhappa Utage ◽  
Milind Shivajirao Patole ◽  
Punam Vasudeo Nagvenkar ◽  
Sonali Shankar Kamble ◽  
Rajesh Nivarti Gacche


Oncotarget ◽  
2018 ◽  
Vol 9 (54) ◽  
pp. 30304-30323 ◽  
Author(s):  
Bhimashankar Gurushidhappa Utage ◽  
Milind Shivajirao Patole ◽  
Punam Vasudeo Nagvenkar ◽  
Sonali Shankar Kamble ◽  
Rajesh Nivarti Gacche


2004 ◽  
Vol 91 (7) ◽  
pp. 1364-1371 ◽  
Author(s):  
H Cai ◽  
E A Hudson ◽  
P Mann ◽  
R D Verschoyle ◽  
P Greaves ◽  
...  


2017 ◽  
Vol Volume11 ◽  
pp. 337-350 ◽  
Author(s):  
Hamed Karimian ◽  
Aditya Arya ◽  
Mehran Fadaeinasab ◽  
Mahbobeh Razavi ◽  
Maryam Hajrezaei ◽  
...  


2017 ◽  
Vol 89 ◽  
pp. 1027-1036 ◽  
Author(s):  
Bo Yang ◽  
Rui Zhu ◽  
Shasha Tian ◽  
Yiqi Wang ◽  
Siyue Lou ◽  
...  




2019 ◽  
Vol 149 (1) ◽  
pp. 46-56 ◽  
Author(s):  
Marnie Newell ◽  
Miranda Brun ◽  
Catherine J Field

ABSTRACT Background Docosahexaenoic acid (DHA) has been shown to reduce growth of breast cancer cells in vitro and in vivo; it may also benefit the action of cytotoxic cancer drugs. The mechanisms for these observations are not completely understood. Objectives We sought to explore how pretreatment of MDA-MB-231 breast cancer cells with DHA alters gene expression with doxorubicin (DOX) treatment and confirm that feeding DHA to tumor-bearing nu/nu mice improves the efficacy of DOX. Methods MDA-MB-231 cells were subjected to 4 conditions: a control mixture of 40 μM linoleic and 40 μM oleic acid (OALA), DHA (60 μM plus OALA), OALA DOX (0.41 μM), or DHA DOX (plus OALA) and assessed for effects on viability and function. Female nu/nu mice (6 wk old) bearing MDA-MB-231 tumors were randomly assigned to a nutritionally complete diet (20 g ± 2.8 g DHA/100 g diet) containing a polyunsaturated:saturated fat ratio of 0.5, with or without injections 2 times/wk of 5 mg DOX/kg for 4 wk. Results Microarray and protein analysis indicated that DHA DOX cells, compared with OALA DOX, had upregulated expression of apoptosis genes, Caspase-10 (1.3-fold), Caspase-9 (1.4-fold), and Receptor (TNFRSF)-interacting serine-threonine kinase 1 (RIPK1) (1.2-fold), while downregulating cell cycle genes, Cyclin B1 (−2.1-fold), WEE1 (−1.6-fold), and cell division cycle 25 homolog C (CDC25C) (−1.8-fold) (P < 0.05). DHA DOX–treated mice had 50% smaller tumors than control mice (P < 0.05). Analysis of proapoptotic proteins from tumors of DHA DOX mice showed increased Caspase-10 (by 68%) and BH3 interacting domain death agonist (Bid) (by 50%), decreased B-cell CLL/lymphoma 2 (BCL2) (by 24%), and decreased cell cycle proteins Cyclin B1 and Cdc25c (both by 42%), compared with control mice (P < 0.05). Conclusions Supplementation with DHA facilitates the action of DOX in MDA-MB-231 cells and in nu/nu mice, which may occur via amplification of the effect of DOX on apoptosis and cell cycle genes.



2021 ◽  
pp. 1-10
Author(s):  
Yu Wang ◽  
Han Zhao ◽  
Ping Zhao ◽  
Xingang Wang

BACKGROUND: Pyruvate kinase M2 (PKM2) was overexpressed in many cancers, and high PKM2 expression was related with poor prognosis and chemoresistance. OBJECTIVE: We investigated the expression of PKM2 in breast cancer and analyzed the relation of PKM2 expression with chemotherapy resistance to the neoadjuvant chemotherapy (NAC). We also investigated whether PKM2 could reverse chemoresistance in breast cancer cells in vitro and in vivo. METHODS: Immunohistochemistry (IHC) was performed in 130 surgical resected breast cancer tissues. 78 core needle biopsies were collected from breast cancer patients before neoadjuvant chemotherapy. The relation of PKM2 expression and multi-drug resistance to NAC was compared. The effect of PKM2 silencing or overexpression on Doxorubicin (DOX) sensitivity in the MCF-7 cells in vitro and in vivo was compared. RESULTS: PKM2 was intensively expressed in breast cancer tissues compared to adjacent normal tissues. In addition, high expression of PKM2 was associated with poor prognosis in breast cancer patients. The NAC patients with high PKM2 expression had short survival. PKM2 was an independent prognostic predictor for surgical resected breast cancer and NAC patients. High PKM2 expression was correlated with neoadjuvant treatment resistance. High PKM2 expression significantly distinguished chemoresistant patients from chemosensitive patients. In vitro and in vivo knockdown of PKM2 expression decreases the resistance to DOX in breast cancer cells in vitro and tumors in vivo. CONCLUSION: PKM2 expression was associated with chemoresistance of breast cancers, and could be used to predict the chemosensitivity. Furthermore, targeting PKM2 could reverse chemoresistance, which provides an effective treatment methods for patients with breast cancer.



2021 ◽  
Vol 20 ◽  
pp. 153303382110278
Author(s):  
Yayan Yang ◽  
Qian Feng ◽  
Chuanfeng Ding ◽  
Wei Kang ◽  
Xiufeng Xiao ◽  
...  

Although Epirubicin (EPI) is a commonly used anthracycline for the treatment of breast cancer in clinic, the serious side effects limit its long-term administration including myelosuppression and cardiomyopathy. Nanomedicines have been widely utilized as drug delivery vehicles to achieve precise targeting of breast cancer cells. Herein, we prepared a DSPE-PEG nanocarrier conjugated a peptide, which targeted the breast cancer overexpression protein Na+/K+ ATPase α1 (NKA-α1). The nanocarrier encapsulated the EPI and grafted with the NKA-α1 targeting peptide through the click reaction between maleimide and thiol groups. The EPI was slowly released from the nanocarrier after entering the breast cancer cells with the guidance of the targeting NKA-α1 peptide. The precise and controllable delivery and release of the EPI into the breast cancer cells dramatically inhibited the cells proliferation and migration in vitro and suppressed the tumor volume in vivo. These results demonstrate significant prospects for this nanocarrier as a promising platform for numerous chemotherapy drugs.



Sign in / Sign up

Export Citation Format

Share Document