scholarly journals The lncRNA DLX6-AS1 promoted cell proliferation, invasion, migration and epithelial-to-mesenchymal transition in bladder cancer via modulating Wnt/β-catenin signaling pathway

2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Jinan Guo ◽  
Zhixin Chen ◽  
Hongtao Jiang ◽  
Zhou Yu ◽  
Junming Peng ◽  
...  

Abstract Background Bladder cancer is the most common human urological malignancies with poor prognosis, and the pathophysiology of bladder cancer involves multi-linkages of regulatory networks in the bladder cancer cells. Recently, the long noncoding RNAs (lncRNAs) have been extensively studied for their role on bladder cancer progression. In this study, we evaluated the expression of DLX6 Antisense RNA 1 (DLX6-AS1) in the cancerous bladder tissues and studied the possible mechanisms of DLX6-AS1 in regulating bladder cancer progression. Methods Gene expression was determined by qRT-PCR; protein expression levels were evaluated by western blot assay; in vitro functional assays were used to determine cell proliferation, invasion and migration; nude mice were used to establish the tumor xenograft model. Results Our results showed the up-regulation of DLX6-AS1 in cancerous bladder cancer tissues and bladder cell lines, and high expression of DLX6-AS1 was correlated with advance TNM stage, lymphatic node metastasis and distant metastasis. The in vitro experimental data showed that DLX6-AS1 overexpression promoted bladder cancer cell growth, proliferation, invasion, migration and epithelial-to-mesenchymal transition (EMT); while DLX6-AS1 inhibition exerted tumor suppressive actions on bladder cancer cells. Further results showed that DLX6-AS1 overexpression increased the activity of Wnt/β-catenin signaling, and the oncogenic role of DLX6-AS1 in bladder cancer cells was abolished by the presence of XAV939. On the other hand, DLX6-AS1 knockdown suppressed the activity of Wnt/β-catenin signaling, and the tumor-suppressive effects of DLX6-AS1 knockdown partially attenuated by lithium chloride and SB-216763 pretreatment. The in vivo tumor growth study showed that DLX6-AS1 knockdown suppressed tumor growth of T24 cells and suppressed EMT and Wnt/β-catenin signaling in the tumor tissues. Conclusion Collectively, the present study for the first time identified the up-regulation of DLX6-AS1 in clinical bladder cancer tissues and in bladder cancer cell lines. The results from in vitro and in vivo assays implied that DLX6-AS1 exerted enhanced effects on bladder cancer cell proliferation, invasion and migration partly via modulating EMT and the activity of Wnt/β-catenin signaling pathway.

2020 ◽  
Author(s):  
Wei Wang ◽  
Jianxin Qiu ◽  
Pin Qu ◽  
Hui Chen ◽  
Jianyun Lan ◽  
...  

Abstract Background: The regulator of cullins-1 (ROC1) is an essential subunit in the cullin-RING ligase (CRL) protein complex and has been shown to be critical in bladder cancer cell survival and progression. This study aimed to explore the molecular mechanism of ROC1 action in the malignant progression of bladder cancer.Methods: This study utilized ex vivo, in vitro, and in vivo nude mouse experiments to assess the underlying mechanisms of ROC1 in bladder cancer cells. The expression of the components of the sonic hedgehog (SHH) pathway was determined by western blot analysis. ROC1 expression in human tumors was evaluated by immunohistochemistry.Results: ROC1 overexpression promoted the growth of bladder cancer cells, whereas knockdown of ROC1 expression had the opposite effect in bladder cancer cells. Mechanistically, ROC1 was able to target suppressor of fused homolog (SUFU) for ubiquitin-dependent degradation, allowing Gli2 release from the SUFU complex to activate the SHH pathway. Furthermore, knockdown of SUFU expression partially rescued the ROC1 knockdown-suppressed SHH activity as well as cancer cell growth inhibition. In ex vivo experiments, tissue microarray analysis of human bladder cancer specimens revealed a positive association of ROC1 expression with the SHH pathway activity. Conclusion: This study demonstrated that dysregulation of the ROC1–SUFU–GLI2 axis plays an important role in bladder cancer progression and that targeting ROC1 expression is warranted in further investigations as a novel strategy for the future control of bladder cancer.


2020 ◽  
Author(s):  
Wei Wang ◽  
Jianxin Qiu ◽  
Pin Qu ◽  
Hui Chen ◽  
Jianyun Lan ◽  
...  

Abstract Background: The regulator of cullins-1 (ROC1) is an essential subunit in the cullin-RING ligase (CRL) protein complex and has been shown to be critical in bladder cancer cell survival and progression. This study aimed to explore the molecular mechanism of ROC1 action in the malignant progression of bladder cancer.Methods: This study utilized ex vivo, in vitro, and in vivo nude mouse experiments to assess the underlying mechanisms of ROC1 in bladder cancer cells. The expression of the components of the sonic hedgehog (SHH) pathway was determined by western blot analysis. ROC1 expression in human tumors was evaluated by immunohistochemistry.Results: ROC1 overexpression promoted the growth of bladder cancer cells, whereas knockdown of ROC1 expression had the opposite effect in bladder cancer cells. Mechanistically, ROC1 was able to target suppressor of fused homolog (SUFU) for ubiquitin-dependent degradation, allowing Gli2 release from the SUFU complex to activate the SHH pathway. Furthermore, knockdown of SUFU expression partially rescued the ROC1 knockdown-suppressed SHH activity as well as cancer cell growth inhibition. In ex vivo experiments, tissue microarray analysis of human bladder cancer specimens revealed a positive association of ROC1 expression with the SHH pathway activity. Conclusion: This study demonstrated that dysregulation of the ROC1–SUFU–GLI2 axis plays an important role in bladder cancer progression and that targeting ROC1 expression is warranted in further investigations as a novel strategy for the future control of bladder cancer.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
W. Wang ◽  
J. Qiu ◽  
P. Qu ◽  
H. Chen ◽  
J. Lan ◽  
...  

Abstract Background The regulator of cullins-1 (ROC1) is an essential subunit in the cullin-RING ligase (CRL) protein complex and has been shown to be critical in bladder cancer cell survival and progression. This study aimed to explore the molecular mechanism of ROC1 action in the malignant progression of bladder cancer. Methods This study utilized ex vivo, in vitro, and in vivo nude mouse experiments to assess the underlying mechanisms of ROC1 in bladder cancer cells. The expression of the components of the sonic hedgehog (SHH) pathway was determined by western blot analysis. ROC1 expression in human tumors was evaluated by immunohistochemistry. Results ROC1 overexpression promoted the growth of bladder cancer cells, whereas knockdown of ROC1 expression had the opposite effect in bladder cancer cells. Mechanistically, ROC1 was able to target suppressor of fused homolog (SUFU) for ubiquitin-dependent degradation, allowing Gli2 release from the SUFU complex to activate the SHH pathway. Furthermore, knockdown of SUFU expression partially rescued the ROC1 knockdown-suppressed SHH activity as well as cancer cell growth inhibition. In ex vivo experiments, tissue microarray analysis of human bladder cancer specimens revealed a positive association of ROC1 expression with the SHH pathway activity. Conclusion This study demonstrated that dysregulation of the ROC1–SUFU–GLI2 axis plays an important role in bladder cancer progression and that targeting ROC1 expression is warranted in further investigations as a novel strategy for the future control of bladder cancer.


2020 ◽  
Author(s):  
Wei Wang ◽  
Jianxin Qiu ◽  
Pin Qu ◽  
Hui Chen ◽  
Jianyun Lan ◽  
...  

Abstract Background: The regulator of cullins-1 (ROC1) is an essential subunit in the Cullin-RING ligase (CRL) protein complex and was shown to be critical in bladder cancer cell survival and malignant progression. This study aimed to explore the regulatory mechanism of ROC1 in bladder cancer malignant progression. Methods: This study explored the underlying mechanisms using both in vitro and in vivo experiments. The expression of the components of Sonic Hedgehog (SHH) pathway was determined by western blotting analysis. ROC1 expression in human tumours was evaluated by immunohistochemical analysis. Results: The data showed that ROC1 overexpression promoted growth of bladder cancer cells, whereas knockdown of ROC1 expression had an opposite effect in bladder cancer cells. Mechanistically, ROC1 was able to target SUFU for ubiquitin-dependent degradation, allowing the Gli2 release from the SUFU complex to activate SHH pathway. Furthermore, knockdown of SUFU expression partially rescue the ROC1 knockdown-suppressed SHH activity as well as cancer cell growth inhibition. At ex vivo, tissue microarray analysis of human bladder cancer specimens revealed an positive association of ROC1 expression with the SHH pathway activity. Conclusion: The current study demonstrated the dysregulation of ROC1-SUFU-GLI2 axis played an important role in bladder cancer progression and targeting of ROC1 expression is warranted further investigation as a novel strategy for future control of bladder cancer.


2020 ◽  
Author(s):  
Wei Wang ◽  
Jianxin Qiu ◽  
Pin Qu ◽  
Hui Chen ◽  
Jianyun Lan ◽  
...  

Abstract Background The regulator of cullins-1 (ROC1) is an essential subunit in the Cullin-RING ligase (CRL) protein complex and was shown to be critical in bladder cancer cell survival and malignant progression. This study aimed to explore the regulatory mechanism of ROC1 in bladder cancer malignant progression. Methods This study explored the underlying mechanisms using both in vitro and in vivo experiments. The expression of the components of Sonic Hedgehog (SHH) pathway was determined by western blotting analysis. ROC1 expression in human tumours was evaluated by immunohistochemical analysis. Results The data showed that ROC1 overexpression promoted growth of bladder cancer cells, whereas knockdown of ROC1 expression had an opposite effect in bladder cancer cells. Mechanistically, ROC1 was able to target SUFU for ubiquitin-dependent degradation, allowing the Gli2 release from the SUFU complex to activate SHH pathway. Furthermore, knockdown of SUFU expression partially rescue the ROC1 knockdown-suppressed SHH activity as well as cancer cell growth inhibition. At ex vivo, tissue microarray analysis of human bladder cancer specimens revealed an positive association of ROC1 expression with the SHH pathway activity. Conclusion The current study demonstrated the dysregulation of ROC1-SUFU-GLI2 axis played an important role in bladder cancer progression and targeting of ROC1 expression is warranted further investigation as a novel strategy for future control of bladder cancer.


Author(s):  
Jun Zou ◽  
Ruiyan Huang ◽  
Yanfei Chen ◽  
Xiaoping Huang ◽  
Huajun Li ◽  
...  

BackgroundAerobic glycolysis and epidermal–mesenchymal transition (EMT) play key roles in the development of bladder cancer. This study aimed to investigate the function and the underlying mechanism of dihydropyrimidinase like 2 (DPYSL2) in bladder cancer progression.MethodsThe expression pattern of DPYSL2 in bladder cancer and the correlation of DPYSL2 expression with clinicopathological characteristics of bladder cancer patients were analyzed using the data from different databases and tissue microarray. Gain- and loss-of-function assays were performed to explore the role of DPYSL2 in bladder cancer progression in vitro and in mice. Proteomic analysis was performed to identify the interacting partner of DPYSL2 in bladder cancer cells.FindingsThe results showed that DPYSL2 expression was upregulated in bladder cancer tissue compared with adjacent normal bladder tissue and in more aggressive cancer stages compared with lower stages. DPYSL2 promoted malignant behavior of bladder cancer cells in vitro, as well as tumor growth and distant metastasis in mice. Mechanistically, DPYSL2 interacted with pyruvate kinase M2 (PKM2) and promoted the conversion of PKM2 tetramers to PKM2 dimers. Knockdown of PKM2 completely blocked DPYSL2-induced enhancement of the malignant behavior, glucose uptake, lactic acid production, and epithelial–mesenchymal transition in bladder cancer cells.InterpretationIn conclusion, the results suggest that DPYSL2 promotes aerobic glycolysis and EMT in bladder cancer via PKM2, serving as a potential therapeutic target for bladder cancer treatment.


Author(s):  
Shuilian Wu ◽  
Jialei Yang ◽  
Haotian Xu ◽  
Xin Wang ◽  
Ruirui Zhang ◽  
...  

AbstractExtensive research confirmed that circRNA can play a regulatory role in various stages of tumors by interacting with various molecules. Identifying the differentially expressed circRNA in bladder cancer and exploring its regulatory mechanism on bladder cancer progression are urgent. In this study, we screened out a circRNA-circGLIS3 with a significant upregulation trend in both bladder cancer tissues and cells. Bioinformatics prediction results showed that circGLIS3 may be involved in multiple tumor-related pathways. Function gain and loss experiments verified circGLIS3 can affect the proliferation, migration, and invasion of bladder cancer cells in vitro. Moreover, silencing circGLIS3 inhibited bladder cancer cell growth in vivo. Subsequent research results indicated circGLIS3 regulated the expression of cyclin D1, a cell cycle–related protein, and cell cycle progression. Mechanically, circGLIS3 upregulates the expression of SKP1 by adsorbing miR-1273f and then promotes cyclin D1 expression, ultimately promoting the proliferation of bladder cancer cells. In summary, our study indicates that circGLIS3 plays an oncogene role in the development of bladder cancer and has potential to be a candidate for bladder cancer. Graphical abstract


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Koichi Kitagawa ◽  
Katsumi Shigemura ◽  
Aya Ishii ◽  
Takuji Nakashima ◽  
Hirotaka Matsuo ◽  
...  

AbstractNanaomycin K, derived from Streptomyces rosa subsp. notoensis OS-3966T, has been discovered to have inhibitory bioactivity on epithelial–mesenchymal transition (EMT), an important mechanism of cancer cell invasion and migration. In this study, we examined the anti-EMT and anti-tumor effect of nanaomycin K in bladder cancer, where EMT has important roles in progression. We treated two bladder cancer lines, non-muscle-invasive KK47 and muscle-invasive T24, with nanaomycin K to determine the effects on cell proliferation, apoptosis and expression of EMT markers in vitro. Wound-healing assays were performed to assess cell invasion and migration. We conducted an in vivo xenograft study in which mice were inoculated with bladder cancer cells and treated with intratumoral administration of nanaomycin K to investigate its anti-tumor and EMT inhibition effects. As the results, nanaomycin K (50 µg/mL) significantly inhibited cell proliferation in KK47 (p < 0.01) and T24 (p < 0.01) in the presence of TGF-β, which is an EMT-inducer. Nanaomycin K (50 µg/mL) also significantly inhibited cell migration in KK47 (p < 0.01) and T24 (p < 0.01), and induced apoptosis in both cell lines in the presence of TGF-β (p < 0.01). Nanaomycin K increased the expression of E-cadherin and inhibited the expression of N-cadherin and vimentin in both cell lines. Nanaomycin K also decreased expression of Snail, Slug, phospho-p38 and phospho-SAPK/JNK especially in T24. Intratumoral administration of nanaomycin K significantly inhibited tumor growth in both KK47 and T24 cells at high dose (1.0 mg/body) (p = 0.009 and p = 0.003, respectively) with no obvious adverse events. In addition, nanaomycin K reversed EMT and significantly inhibited the expression of Ki-67 especially in T24. In conclusion, we demonstrated that nanaomycin K had significant anti-EMT and anti-tumor effects in bladder cancer cells, suggesting that nanaomycin K may be a therapeutic candidate for bladder cancer treatment.


2020 ◽  
Author(s):  
Chongxing Shen ◽  
Xiaofeng Yue ◽  
Linyong Dai ◽  
Jianwu Wang ◽  
Jinjin Li ◽  
...  

Abstract Background: Bladder cancer has a high rate of recurrence and drug resistance due to a lack of effective therapies. IR-780 iodide, a near-infrared (NIR) mitochondria-targeting fluorescent agent, has been demonstrated to achieve higher selectivity than other drugs in different tumor types. In the study, we aimed to investigate the anti-tumor effect of IR-780 combined with hyperbaric oxygen (HBO) on bladder cancer.Methods: Using in vitro cell line data, in vivo model data and clinical data, we tested the ability of IR-780 to selectively accumulate in bladder cancer. We also evaluated the anti-tumor effect of IR-780 combined or not with HBO both in vitro and in vivo, and explored the potential mechanism of its anti-tumor effect. Results: We revealed for the first time that IR-780 selectively accumulated in bladder cancer (bladder cancer cells, xenografts and bladder cancer samples from patients) and could induce cancer cell apoptosis by targeting the mitochondrial complex I protein NDUFS1. Further study displayed that the combination with HBO could significantly enhance the antitumor effect of IR-780 in vitro by promoting cancer cell uptake and inducing excessive mitochondrial reactive oxygen species (ROS) production, while suppressing tumor growth and recurrence in animal models without causing apparent toxicity. Moreover, this combination antitumor strategy was also demonstrated in drug-resistant bladder cancer cells (T24/DDP) and xenografts. Conclusions: These data identify for the first time a combination of IR-780 and HBO (IR-780+HBO), which exhibits mitochondria-targeting and therapeutic capabilities, as a novel treatment paradigm for bladder cancer.


Sign in / Sign up

Export Citation Format

Share Document