scholarly journals Induction and application of ferroptosis in cancer therapy

2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Qing Nie ◽  
Yue Hu ◽  
Xiao Yu ◽  
Xiao Li ◽  
Xuedong Fang

AbstractAt present, more than one cell death pathways have been found, one of which is ferroptosis. Ferroptosis was discovered in 2012 and described as an iron-dependent and lipid peroxidation-driven regulated cell death pathway. In the past few years, ferroptosis has been shown to induce tumor cell death, providing new ideas for tumor treatment. In this article, we summarize the latest advances in ferroptosis-induced tumor therapy at the intersection of tumor biology, molecular biology, redox biology, and materials chemistry. First, we state the characteristics of ferroptosis in cells, then introduce the key molecular mechanism of ferroptosis, and describes the relationship between ferroptosis and oxidative stress signaling pathways. Finally, we focused on several types of ferroptosis inducers discovered by scholars, and the application of ferroptosis in systemic chemotherapy, radiotherapy, immunotherapy and nanomedicine, in the hope that ferroptosis can exert its potential in the treatment of tumors.

2022 ◽  
Vol 5 (1) ◽  
Author(s):  
Cliff J. Luke ◽  
Stephanie Markovina ◽  
Misty Good ◽  
Ira E. Wight ◽  
Brian J. Thomas ◽  
...  

AbstractLysosomal membrane permeabilization (LMP) and cathepsin release typifies lysosome-dependent cell death (LDCD). However, LMP occurs in most regulated cell death programs suggesting LDCD is not an independent cell death pathway, but is conscripted to facilitate the final cellular demise by other cell death routines. Previously, we demonstrated that Caenorhabditis elegans (C. elegans) null for a cysteine protease inhibitor, srp-6, undergo a specific LDCD pathway characterized by LMP and cathepsin-dependent cytoplasmic proteolysis. We designated this cell death routine, lysoptosis, to distinguish it from other pathways employing LMP. In this study, mouse and human epithelial cells lacking srp-6 homologues, mSerpinb3a and SERPINB3, respectively, demonstrated a lysoptosis phenotype distinct from other cell death pathways. Like in C. elegans, this pathway depended on LMP and released cathepsins, predominantly cathepsin L. These studies suggested that lysoptosis is an evolutionarily-conserved eukaryotic LDCD that predominates in the absence of neutralizing endogenous inhibitors.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Xiao Lin ◽  
Haotuo Ye ◽  
Felix Siaw-Debrah ◽  
Sishi Pan ◽  
Zibin He ◽  
...  

Intracerebral hemorrhage (ICH) refers to bleeding in the brain and is associated with the release of large amount of inflammasomes, and the activation of different cell death pathways. These cell death pathways lead to removal of inactivated and damaged cells and also result in neuronal cell damage. Pyroptosis is a newly discovered cell death pathway that has gained attention in recent years. This pathway mainly depends on activation of caspase-1-mediated cascades to cause cell death. We tested a well-known selective inhibitor of caspase-1, AC-YVAD-CMK, which has previously been found to have neuroprotective effects in ICH mice model, to ascertain its effects on the activation of inflammasomes mediated pyroptosis. Our results showed that AC-YVAD-CMK could reduce caspase-1 activation and inhibit IL-1β production and maturation, but has no effect on NLRP3 expression, an upstream inflammatory complex. AC-YVAD-CMK administration also resulted in reduction in M1-type microglia polarization around the hematoma, while increasing the number of M2-type cells. Furthermore, AC-YVAD-CMK treated mice showed some recovery of neurological function after hemorrhage especially at the hyperacute and subacute stage resulting in some degree of limb movement. In conclusion, we are of the view that AC-YVAD-CMK could inhibit pyroptosis, decrease the secretion or activation of inflammatory factors, and affect the polarization of microglia resulting in improvement of neurological function after ICH.


2022 ◽  
Vol 102 (1) ◽  
pp. 411-454
Author(s):  
Bart Tummers ◽  
Douglas R. Green

The coevolution of host-pathogen interactions underlies many human physiological traits associated with protection from or susceptibility to infections. Among the mechanisms that animals utilize to control infections are the regulated cell death pathways of pyroptosis, apoptosis, and necroptosis. Over the course of evolution these pathways have become intricate and complex, coevolving with microbes that infect animal hosts. Microbes, in turn, have evolved strategies to interfere with the pathways of regulated cell death to avoid eradication by the host. Here, we present an overview of the mechanisms of regulated cell death in Animalia and the strategies devised by pathogens to interfere with these processes. We review the molecular pathways of regulated cell death, their roles in infection, and how they are perturbed by viruses and bacteria, providing insights into the coevolution of host-pathogen interactions and cell death pathways.


Author(s):  
Sinem Yilmaz ◽  
Fatih Tok ◽  
Esra A. Sahar ◽  
Bedia K. Kaymakcioglu ◽  
Petek B. Kirmizibayrak

Background: The complexity of cancer biology and the development of chemotherapy resistance are two main obstacles to cancer treatment and necessitate novel anticancer molecules that target different cell death pathways. Modulation of endoplasmic reticulum (ER) stress and subsequent activation of the unfolded protein response (UPR) has been proposed as potential chemotherapeutic target, as prolonged ER stress can lead to cell death via apoptosis or necrosis. Objective: The present study aims to evaluate the molecular mechanism underlying the cytotoxic activity of selected urea and carbohydrazide derivatives. Methods: Cell proliferation assays were performed on HeLa, Capan1, MCF7, HCC1937, and MRC5 cell lines by WST-1 assay. The expression levels of selected ER stress, autophagy, and apoptosis marker proteins were compared by immunoblotting to characterize the underlying mechanism of cytotoxicity. Flow cytometry was used to detect apoptosis. Results: Of the tested cytotoxic compounds, 3a, 4a, 5a, 6a, and 1b dramatically and 5b moderately increased ER stress-related CHOP protein levels. Interestingly, 5b but not 3a, 4a, 5a, 6a, or 1b increased the expression of pro-apoptotic proteins such as cleaved PARP-1 and cleaved caspase-3 and -7. Flow-cytometry analysis further confirmed that the cytotoxic activity of 5b but not the other compounds is mediated by apoptosis, which is also demonstrated by a significant increase in the percentage of late apoptotic cells (7-AAD/annexin V double-positive cells). Conclusion: Our results suggest that changing a substituent from trifluoromethyl to nitro in urea and carbohydrazide core structure alters the cell death mechanism from apoptosis to an apoptosis-independent cell death pathway. This study shows an example of how such simple modifications of a core chemical structure could cause the induction of divergent cell death pathways.


2020 ◽  
Vol 11 (10) ◽  
Author(s):  
Ling Huang ◽  
Daniel B. McClatchy ◽  
Pamela Maher ◽  
Zhibin Liang ◽  
Jolene K. Diedrich ◽  
...  

Abstract Amyloid beta (Aβ) accumulates within neurons in the brains of early stage Alzheimer’s disease (AD) patients. However, the mechanism underlying its toxicity remains unclear. Here, a triple omics approach was used to integrate transcriptomic, proteomic, and metabolomic data collected from a nerve cell model of the toxic intracellular aggregation of Aβ. It was found that intracellular Aβ induces profound changes in the omics landscape of nerve cells that are associated with a pro-inflammatory, metabolic reprogramming that predisposes cells to die via the oxytosis/ferroptosis regulated cell death pathway. Notably, the degenerative process included substantial alterations in glucose metabolism and mitochondrial bioenergetics. Our findings have implications for the understanding of the basic biology of proteotoxicity, aging, and AD as well as for the development of future therapeutic interventions designed to target the oxytosis/ferroptosis regulated cell death pathway in the AD brain.


2010 ◽  
Vol 52 (1) ◽  
pp. 84-95 ◽  
Author(s):  
Iga Samol ◽  
Frank Buhr ◽  
Armin Springer ◽  
Stephan Pollmann ◽  
Abder Lahroussi ◽  
...  

Pharmaceutics ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 923
Author(s):  
Teresa Ratschker ◽  
Laura Egenberger ◽  
Magdalena Alev ◽  
Lisa Zschiesche ◽  
Julia Band ◽  
...  

Stimulating the patient’s immune system represents a promising therapeutic strategy to fight cancer. However, low immunogenicity of the tumor cells within an immune suppressive milieu often leads to weak anti-tumor immune responses. Additionally, the immune system may be impaired by accompanying aggressive chemotherapies. We show that mitoxantrone, bound to superparamagnetic iron oxide nanoparticles (SPIONs) as the transport system, can be magnetically accumulated in adherent HT-29 colon carcinoma cells, thereby inducing the same cell death phenotype as its soluble counterpart, a chemotherapeutic agent and prototypic inductor of immunogenic cell death. The nanoparticle-loaded drug induces cell cycle stop, apoptosis and secondary necrosis in a dose- and time-dependent manner comparable to the free drug. Cell death was accompanied by the release of interleukin-8 and damage-associated molecular patterns (DAMPs) such as HSP70 and ATP, which fostered chemotactic migration of monocytes and maturation of dendritic cells. We furthermore ensured absence of endotoxin contaminations and compatibility with erythrocytes and platelets and investigated the influence on plasma coagulation in vitro. Summarizing, with magnetic enrichment, mitoxantrone can be accumulated at the desired place, sparing healthy peripheral cells and tissues, such as immune cells. Conserving immune competence in cancer patients in the future might allow combined therapeutic approaches with immune therapies (e.g., checkpoint inhibitors).


Author(s):  
Ayelén Mariana Distéfano ◽  
Gabriel Alejandro López ◽  
Nicolás Setzes ◽  
Fernanda Marchetti ◽  
Maximiliano Cainzos ◽  
...  

Abstract Regulated cell death plays key roles during essential processes throughout the plant life cycle. It takes part in specific developmental programs and maintains homeostasis of the organism in response to unfavorable environments. Ferroptosis is a recently discovered iron-dependent cell death pathway characterized by the accumulation of lipid reactive oxygen species. In plants, ferroptosis shares all the main hallmarks described in other systems. Those specific features include biochemical and morphological signatures that seem to be conserved among species. However, plant cells have specific metabolic pathways and a high degree of metabolic compartmentalization. Together with their particular morphology, these features add more complexity to the plant ferroptosis pathway. In this review, we summarize the most recent advances in elucidating the roles of ferroptosis in plants, focusing on specific triggers, the main players, and underlying pathways.


2008 ◽  
Vol 182 (1) ◽  
pp. 15-17 ◽  
Author(s):  
Jonathan D. Ashwell

Smac mimetics (inhibitor of apoptosis [IAP] antagonists) are synthetic reagents that kill susceptible tumor cells by inducing degradation of cellular IAP (cIAP) 1 and cIAP2, nuclear factor κB activation, tumor necrosis factor (TNF) α production, TNF receptor 1 occupancy, and caspase-8 activation. In this issue of The Journal of Cell Biology, Vince et al. (see p. 171) report remarkable similarities in the events leading to tumor cell death triggered by the cytokine TWEAK (TNF-like weak inducer of apoptosis) and IAP antagonists. Although the mechanistic details differ, a common and necessary feature that is also shared by TNF receptor 2 signaling is reduction in the level of cIAP1 and, in some cases, cIAP2 and TNF receptor-associated factor 2. These findings not only extend our appreciation of how cell death pathways are kept in check in tumors, they reinforce the possible utility of induced cIDE (cIAP deficiency) in the selective elimination of neoplastic cells.


Blood ◽  
2007 ◽  
Vol 110 (12) ◽  
pp. 3968-3977 ◽  
Author(s):  
Dirk Brenner ◽  
Alexander Golks ◽  
Mareike Becker ◽  
Wolfgang Müller ◽  
Christian R. Frey ◽  
...  

Abstract Life and death of peripheral lymphocytes is strictly controlled to maintain physiologic levels of T and B cells. Activation-induced cell death (AICD) is one mechanism to delete superfluous lymphocytes by restimulation of their immunoreceptors and it depends partially on the CD95/CD95L system. Recently, we have shown that hematopoietic progenitor kinase 1 (HPK1) determines T-cell fate. While full-length HPK1 is essential for NF-κB activation in T cells, the C-terminal fragment of HPK1, HPK1-C, suppresses NF-κB and sensitizes toward AICD by a yet undefined cell death pathway. Here we show that upon IL-2–driven expansion of primary T cells, HPK1 is converted to HPK1-C by a caspase-3 activity below the threshold of apoptosis induction. HPK1-C se-lectively blocks induction of NF-κB–dependent antiapoptotic Bcl-2 family members but not of the proapoptotic Bcl-2 family member Bim. Interestingly, T and B lymphocytes from HPK1-C transgenic mice undergo AICD independently of the CD95/CD95L system but involving caspase-9. Knock down of HPK1/HPK1-C or Bim by small interfering RNA shows that CD95L-dependent and HPK1/HPK1-C–dependent cell death pathways complement each other in AICD of primary T cells. Our results define HPK1-C as a suppressor of antiapoptotic Bcl-2 proteins and provide a molecular basis for our understanding of CD95L-independent AICD of lymphocytes.


Sign in / Sign up

Export Citation Format

Share Document