scholarly journals Accumulation of cholesterol, triglycerides and ceramides in hepatocellular carcinomas of diethylnitrosamine injected mice

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Elisabeth M. Haberl ◽  
Rebekka Pohl ◽  
Lisa Rein-Fischboeck ◽  
Marcus Höring ◽  
Sabrina Krautbauer ◽  
...  

Abstract Background Dysregulated lipid metabolism is critically involved in the development of hepatocellular carcinoma (HCC). The respective metabolic pathways affected in HCC can be identified using suitable experimental models. Mice injected with diethylnitrosamine (DEN) and fed a normal chow develop HCC. For the analysis of the pathophysiology of HCC in this model a comprehensive lipidomic analysis was performed. Methods Lipids were measured in tumor and non-tumorous tissues by direct flow injection analysis. Proteins with a role in lipid metabolism were analysed by immunoblot. Mann-Whitney U-test or paired Student´s t-test were used for data analysis. Results Intra-tumor lipid deposition is a characteristic of HCCs, and di- and triglycerides accumulated in the tumor tissues of the mice. Peroxisome proliferator-activated receptor gamma coactivator 1 alpha, lipoprotein lipase and hepatic lipase protein were low in the tumors whereas proteins involved in de novo lipogenesis were not changed. Higher rates of de novo lipogenesis cause a shift towards saturated acyl chains, which did not occur in the murine HCC model. Besides, LDL-receptor protein and cholesteryl ester levels were higher in the murine HCC tissues. Ceramides are cytotoxic lipids and are low in human HCCs. Notably, ceramide levels increased in the murine tumors, and the simultaneous decline of sphingomyelins suggests that sphingomyelinases were involved herein. DEN is well described to induce the tumor suppressor protein p53 in the liver, and p53 was additionally upregulated in the tumors. Conclusions Ceramides mediate the anti-cancer effects of different chemotherapeutic drugs and restoration of ceramide levels was effective against HCC. High ceramide levels in the tumors makes the DEN injected mice an unsuitable model to study therapies targeting ceramide metabolism. This model is useful for investigating how tumors evade the cytotoxic effects of ceramides.

Biology ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1226
Author(s):  
Yujia Jing ◽  
Yifei Chen ◽  
Shan Wang ◽  
Jialiang Ouyang ◽  
Liangyu Hu ◽  
...  

PER2, a circadian clock gene, is associated with mammary gland development and lipid synthesis in rodents, partly via regulating peroxisome proliferator-activated receptor gamma (PPARG). Whether such a type of molecular link existed in bovines was unclear. We hypothesized that PER2 was associated with lipid metabolism and regulated cell cycles and apoptosis in bovine mammary epithelial cells (BMECs). To test this hypothesis, BMECs isolated from three mid-lactation (average 110 d postpartum) cows were used. The transient transfection of small interfering RNA (siRNA) was used to inhibit PER2 transcription in primary BMECs. The silencing of PER2 led to lower concentrations of cellular lipid droplets and triacylglycerol along with the downregulation of lipogenic-related genes such as ACACA, FASN, LPIN1, and SCD, suggesting an overall inhibition of lipogenesis and desaturation. The downregulation of PPARG and SREBF1 in response to PER2 silencing underscored the importance of circadian clock signaling and the transcriptional regulation of lipogenesis. Although the proliferation of BMECs was not influenced by PER2 silencing, the number of cells in the G2/GM phase was upregulated. PER2 silencing did not affect cell apoptosis. Overall, the data provided evidence that PER2 participated in the coordination of mammary lipid metabolism and was potentially a component of the control of lipid droplets and TAG synthesis in ruminant mammary cells. The present data suggested that such an effect could occur through direct effects on transcriptional regulators.


2021 ◽  
Author(s):  
Jerad Jaborek ◽  
Francis Fluharty ◽  
Kichoon Lee ◽  
Henry Zerby ◽  
Alejandro Relling

Abstract Background: This study investigates intramuscular (IM) adipocyte development and growth in the Longissimus muscle (LM) between Wagyu- and Angus-sired steers compared at a similar age and days on feed (DOF) endpoint or similar body weight (BW) endpoint by measuring IM adipocyte cell area and lipid metabolism gene expression. Methods: Angus-sired steers (AN, n=6) were compared with steers from two different Wagyu sires, selected for either growth or marbling, to be compared at a similar DOF (WA-GD, n=5 and WA-MD, n=5) in experiment 1 or BW (WA-GB, n=4 and WA-MB, n=5) in experiment 2, respectively. Results: In experiment 1, WA-MD steers had a greater percentage of IM fat in the LM compared with AN and WA-GD steers. In experiment 2, WA-MB steers had a greater percentage of IM fat in the LM compared with AN and WA-GB steers. The distribution of IM adipocyte area was unimodal at all biopsy collections, with IM adipocyte area becoming progressively larger as cattle age and BW increased (P≤0.01). Peroxisome proliferator activated receptor delta (PPARd) was upregulated earlier for WA-MD and WA-MB cattle compared with other steers at a similar age and BW (P≤0.02; treatment×biopsy interaction). An earlier upregulation of PPARd is believed to have then upregulated peroxisome proliferator activated receptor gamma (PPARg) at a lesser BW for WA-MB steers (P=0.09; treatment×biopsy interaction), while WA-MD steers had a greater (P≤0.04) overall mean PPARg expression compared with other steers. Glycerol-3-phosphate acyltransferase, lipin 1, and hormone sensitive lipase demonstrated expression patterns similar to PPARg and PPARd or CCAAT enhancer binding protein beta, which emphasizes their importance in marbling development and growth. Additionally, WA-MD and WA-MB steers often had a greater early expression of fatty acid transporters (fatty acid transport protein 1; P<0.02; treatment×biopsy interaction) and binding proteins (fatty acid binding protein 4) compared with other steers. With many lipolytic genes upregulated at harvest, acetyl-CoA carboxylase beta may be inhibiting fatty acid oxidation in the LM to allow greater IM fat accumulation.Conclusions: Cattle with a greater marbling propensity appear to upregulate adipogenesis at a lesser maturity through PPARd, PPARg, and possibly adipogenic regulating compounds in lysophosphatidic acid and diacylglycerol.


2005 ◽  
Vol 17 (4) ◽  
pp. 423 ◽  
Author(s):  
E. Capobianco ◽  
A. Jawerbaum ◽  
M. C. Romanini ◽  
V. White ◽  
C. Pustovrh ◽  
...  

15-Deoxy-Δ12,14-prostaglandin J2 (15dPGJ2) is a peroxisome proliferator-activated receptor γ (PPARγ) ligand that regulates lipid homeostasis and has anti-inflammatory properties in many cell types. We postulated that 15dPGJ2 may regulate lipid homeostasis and nitric oxide (NO) levels in term placental tissues and that alterations in these pathways may be involved in diabetes-induced placental derangements. In the present study, we observed that, in term placental tissues from streptozotocin-induced diabetic rats, 15dPGJ2 concentrations were decreased (83%) and immunostaining for nitrotyrosine, indicating peroxynitrite-induced damage, was increased. In the presence of 15dPGJ2, concentrations of nitrates/nitrites (an index of NO production) were diminished (40%) in both control and diabetic rats, an effect that seems to be both dependent on and independent of PPARγ activation. Exogenous 15dPGJ2 did not modify lipid mass, but decreased the incorporation of 14C-acetate into triacylglycerol (35%), cholesteryl ester (55%) and phospholipid (32%) in placenta from control rats, an effect that appears to be dependent on PPARγ activation. In contrast, the addition of 15dPGJ2 did not alter de novo lipid synthesis in diabetic rat placenta, which showed decreased levels of PPARγ. We conclude that 15dPGJ2 modulates placental lipid metabolism and NO production. The concentration and function of 15dPGJ2 and concentrations of PPARγ were altered in placentas from diabetic rats, anomalies probably involved in diabetes-induced placental dysfunction.


2021 ◽  
Vol 99 (10) ◽  
Author(s):  
Hongyan Ding ◽  
Yu Li ◽  
Leihong Liu ◽  
Ning Hao ◽  
Suping Zou ◽  
...  

Abstract Sirtuin 1 (SIRT1), an NAD-dependent protein deacetylase, plays a central role in the control of lipid metabolism in nonruminants. However, the role of SIRT1 in hepatic lipid metabolism in dairy cows with fatty liver is not well known. Thus, we used isolated primary bovine hepatocytes to determine the role of SIRT1 in protecting cells against oleic acid (OA)-induced steatosis. Recombinant adenoviruses to overexpress (AD-GFP-SIRT1-E) or knockdown (AD-GFP-SIRT1-N) SIRT1 were used for transduction of hepatocytes. Calf hepatocytes isolated from five female calves (1 d old, 30 to 40 kg) were used to determine both time required and the lowest dose of OA that could induce triacylglycerol (TAG) accumulation. Analyses indicated that 0.25 mM OA for 24 h was suitable to induce TAG accumulation. In addition, OA not only led to an increase in TAG, but also upregulated mRNA and protein abundance of sterol regulatory element-binding transcription factor 1 (SREBF1) and downregulated SIRT1 and peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PPARGC1A). Thus, these in vitro conditions were deemed optimal for subsequent experiments. Calf hepatocytes were cultured and incubated with OA (0.25 mM) for 24 h, followed by adenoviral AD-GFP-SIRT1-E or AD-GFP-SIRT1-N transduction for 48 h. Overexpression of SIRT1 led to greater protein and mRNA abundance of SIRT1 along with fatty acid oxidation-related genes including PPARGC1A, peroxisome proliferator-activated receptor alpha (PPARA), retinoid X receptor α (RXRA), and ratio of phospho-acetyl-CoA carboxylase alpha (p-ACACA)/total acetyl-CoA carboxylase alpha (ACACA). In contrast, it resulted in lower protein and mRNA abundance of genes related to lipid synthesis including SREBF1, fatty acid synthase (FASN), apolipoprotein E (APOE), and low-density lipoprotein receptor (LDLR). The concentration of TAG decreased due to SIRT1 overexpression. In contrast, silencing SIRT1 led to lower protein and mRNA abundance of SIRT1, PPARGC1A, PPARA, RXRA, and greater protein and mRNA abundance of SREBF1, FASN, APOE, and LDLR. Further, those responses were accompanied by greater content of cellular TAG and total cholesterol (TC). Overall, data from these in vitro studies indicated that SIRT1 is involved in the regulation of lipid metabolism in calf hepatocytes subjected to an increase in the supply of OA. Thus, it is possible that alterations in SIRT1 abundance and activity in vivo contribute to development of fatty liver in dairy cows.


2017 ◽  
Vol 37 (suppl_1) ◽  
Author(s):  
Stefano Spolitu ◽  
Lale Ozcan

Excessive glucagon receptor action in hepatocytes is a major contributing factor to type 2 diabetes (T2D). Accordingly, there has been great interest in developing glucagon receptor antagonists (GRAs) as a treatment for T2D. Although phase 2 clinical trials have shown that GRAs effectively lower blood glucose in T2D subjects, they increase plasma low density lipoprotein (LDL) cholesterol levels, which has presented a significant block to their development. In this context, recent studies have suggested that cholesterol and proprotein convertase subtilisin/kexin type 9 (PCSK9) levels can be regulated by fasting and perhaps glucagon, but in-depth mechanistic insight is lacking. In order to test the functional importance of hepatic glucagon action on lipid metabolism, we silenced glucagon receptor (GcgR) in obese mice using AAV8-H1-shGcgr to silence the receptor in hepatocytes. Consistent with previous reports, this treatment effectively lowered blood glucose in obese mice without a change in body weight. Moreover, GcgR silencing, like GRAs in humans, significantly increased plasma LDL cholesterol. In search for the mechanism, we found that inhibition of GcgR significantly lowered hepatic LDL-receptor protein levels and increased both hepatic PCSK9 and circulating PCSK9. To determine causation, we treated GcgR-silenced mice with a neutralizing monoclonal antibody against PCSK9 and found that this intervention restored hepatic LDL-receptor protein levels and prevented the increase in LDL cholesterol. Further mechanistic work revealed that GcgR silencing in hepatocytes did not increase Pcsk9 mRNA. Rather, blocking GcgR increased the half-life of PCSK9 protein by suppressing signalling through exchange protein activated by cAMP 1 (Epac1). In particular, the ability of GcgR silencing to increase PCSK9 and suppress LDL receptor protein levels was mimicked by hepatocytes lacking Epac1. Thus, GcgR signalling through Epac1 appears to have critical effects on processes that regulate cholesterol metabolism through PCSK9. These new findings have important implications for the lipid metabolism effects of hepatic glucagon signalling in both normal physiology and metabolic disease, and for the development of safer GRA-like drugs to treat T2D.


2019 ◽  
Vol 149 (9) ◽  
pp. 1553-1564 ◽  
Author(s):  
Ji Ye Lim ◽  
Chun Liu ◽  
Kang-Quan Hu ◽  
Donald E Smith ◽  
Dayong Wu ◽  
...  

ABSTRACT Background β-Cryptoxanthin (BCX), a provitamin A carotenoid shown to protect against nonalcoholic fatty liver disease (NAFLD), can be cleaved by β-carotene-15,15′-oxygenase (BCO1) to generate vitamin A, and by β-carotene-9′,10′-oxygenase (BCO2) to produce bioactive apo-carotenoids. BCO1/BCO2 polymorphisms have been associated with variations in plasma carotenoid amounts in both humans and animals. Objectives We investigated whether BCX feeding inhibits high refined-carbohydrate diet (HRCD)-induced NAFLD, dependent or independent of BCO1/BCO2. Methods Six-week-old male wild-type (WT) and BCO1−/−/BCO2−/− double knockout (DKO) mice were randomly fed HRCD (66.5% of energy from carbohydrate) with or without BCX (10 mg/kg diet) for 24 wk. Pathological and biochemical variables were analyzed in the liver and mesenteric adipose tissues (MATs). Data were analyzed by 2-factor ANOVA. Results Compared to their respective HRCD controls, BCX reduced hepatic steatosis severity by 33‒43% and hepatic total cholesterol by 43‒70% in both WT and DKO mice (P &lt; 0.01). Hepatic concentrations of BCX, but not retinol and retinyl palmitate, were 33-fold higher in DKO mice than in WT mice (P &lt; 0.001). BCX feeding increased the hepatic fatty acid oxidation protein peroxisome proliferator-activated receptor-α, and the cholesterol efflux gene ATP-binding cassette transporter5, and suppressed the lipogenesis gene acetyl-CoA carboxylase 1 (Acc1) in the MAT of WT mice but not DKO mice (P &lt; 0.05). BCX feeding decreased the hepatic lipogenesis proteins ACC and stearoyl-CoA desaturase-1 (3-fold and 5-fold) and the cholesterol synthesis genes 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase and HMG-CoA synthase 1 (2.7-fold and 1.8-fold) and increased the cholesterol catabolism gene cholesterol 7α-hydroxylase (1.9-fold) in the DKO but not WT mice (P &lt; 0.05). BCX feeding increased hepatic protein sirtuin1 (2.5-fold) and AMP-activated protein kinase (9-fold) and decreased hepatic farnesoid X receptor protein (80%) and the inflammatory cytokine gene Il6 (6-fold) in the MAT of DKO mice but not WT mice (P &lt; 0.05). Conclusion BCX feeding mitigates HRCD-induced NAFLD in both WT and DKO mice through different mechanisms in the liver-MAT axis, depending on the presence or absence of BCO1/BCO2.


Sign in / Sign up

Export Citation Format

Share Document