scholarly journals Nanomaterials and nanotechnology for the delivery of agrochemicals: strategies towards sustainable agriculture

2022 ◽  
Vol 20 (1) ◽  
Author(s):  
Changcheng An ◽  
Changjiao Sun ◽  
Ningjun Li ◽  
Bingna Huang ◽  
Jiajun Jiang ◽  
...  

AbstractNanomaterials (NMs) have received considerable attention in the field of agrochemicals due to their special properties, such as small particle size, surface structure, solubility and chemical composition. The application of NMs and nanotechnology in agrochemicals dramatically overcomes the defects of conventional agrochemicals, including low bioavailability, easy photolysis, and organic solvent pollution, etc. In this review, we describe advances in the application of NMs in chemical pesticides and fertilizers, which are the two earliest and most researched areas of NMs in agrochemicals. Besides, this article concerns with the new applications of NMs in other agrochemicals, such as bio-pesticides, nucleic acid pesticides, plant growth regulators (PGRs), and pheromone. We also discuss challenges and the industrialization trend of NMs in the field of agrochemicals. Constructing nano-agrochemical delivery system via NMs and nanotechnology facilitates the improvement of the stability and dispersion of active ingredients, promotes the precise delivery of agrochemicals, reduces residual pollution and decreases labor cost in different application scenarios, which is potential to maintain the sustainability of agricultural systems and improve food security by increasing the efficacy of agricultural inputs. Graphical Abstract

2014 ◽  
Vol 804 ◽  
pp. 67-70 ◽  
Author(s):  
Yan Shi ◽  
Hai Yan Chen ◽  
Jia Wang

The steel slag was ultrafine grinded to different particle size, the chemical composition and mineral composition of steel slag were analyzed. The effects of amount of steel slag addition and particle size on the cement gelling properties were studied. The results showed that, with the decrease of the particle size of steel slag, both of the water requirement of normal consistency and the setting time which meet the standard requirement of cement was increased. The stability of cement mixed with ultrafine grinded steel slag were all qualified after testing. The strength of cement mortar was decreased with the increase of ultrafine grinded steel slag. When the content of steel slag powder was above 30wt%, the strength of cement mortar was decreased significantly.


Author(s):  
Dr. Jambla Neha ◽  
Saroch Vikas ◽  
Johar Smita

Rasashastra deals with the Rasa Aushadhis, the drugs of metallic and mineral origin. Mercury is used in most of the Rasaaushadhis. The toxicity of Mineral and metallic preparations are reduced to such an extent by various procedures of Shodhana, Marana etc. that Mercury converts its inherent property of toxicity into medicinal property. Rasa Aushadhis works quickly on the body because due to their small particle size, their absorption starts from the oral mucosa itself. The action of drugs depends largely upon the Anupana i.e. the vehicle for the drug. Rasacharayas have mentioned various Rasa preparations like Bhasmas, Parpati, Pottali, Manduras, Karpooras etc. along with their doses, dose schedule and Anupana / Sahapana etc. The principles of Rasaaushadhis when correlated in modern era are found to be scientifically accurate. We may say that Rasacharyas had already mastered the science of nanotechnology, purification, action of metabolic catalysts, biotransformation and preservation of medicines. The Ayurvedic drugs can be harmful for our body when not administered in proper dosage as per mentioned in classic literatures.


RSC Advances ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 1952-1959
Author(s):  
Yi Zhao ◽  
Fangfang Peng ◽  
Yangchuan Ke

Emulsion with small particle size and good stability stabilized by emulsifiers was successfully prepared for EOR application.


2021 ◽  
Vol 13 (4) ◽  
pp. 1866
Author(s):  
Noor Allesya Alis Ramli ◽  
Faradiella Mohd Kusin ◽  
Verma Loretta M. Molahid

Mining waste may contain potential minerals that can act as essential feedstock for long-term carbon sequestration through a mineral carbonation process. This study attempts to identify the mineralogical and chemical composition of iron ore mining waste alongside the effects of particle size, temperature, and pH on carbonation efficiency. The samples were found to be alkaline in nature (pH of 6.9–7.5) and contained small-sized particles of clay and silt, thus indicating their suitability for mineral carbonation reactions. Samples were composed of important silicate minerals needed for the formation of carbonates such as wollastonite, anorthite, diopside, perovskite, johannsenite, and magnesium aluminum silicate, and the Fe-bearing mineral magnetite. The presence of Fe2O3 (39.6–62.9%) and CaO (7.2–15.2%) indicated the potential of the waste to sequester carbon dioxide because these oxides are important divalent cations for mineral carbonation. The use of small-sized mine-waste particles enables the enhancement of carbonation efficiency, i.e., particles of <38 µm showed a greater extent of Fe and Ca carbonation efficiency (between 1.6–6.7%) compared to particles of <63 µm (0.9–5.7%) and 75 µm (0.7–6.0%). Increasing the reaction temperature from 80 °C to 150–200 °C resulted in a higher Fe and Ca carbonation efficiency of some samples between 0.9–5.8% and 0.8–4.0%, respectively. The effect of increasing the pH from 8–12 was notably observed in Fe carbonation efficiency of between 0.7–5.9% (pH 12) compared to 0.6–3.3% (pH 8). Ca carbonation efficiency was moderately observed (0.7–5.5%) as with the increasing pH between 8–10. Therefore, it has been evidenced that mineralogical and chemical composition were of great importance for the mineral carbonation process, and that the effects of particle size, pH, and temperature of iron mining waste were influential in determining carbonation efficiency. Findings would be beneficial for sustaining the mining industry while taking into account the issue of waste production in tackling the global carbon emission concerns.


Resources ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 108 ◽  
Author(s):  
Alberto Mannu ◽  
Gina Vlahopoulou ◽  
Paolo Urgeghe ◽  
Monica Ferro ◽  
Alessandra Del Caro ◽  
...  

The chemical composition and the color of samples of waste cooking oils (WCOs) were determined prior to and after filtration on two different pads of bentonite differing in particle size. The volatile fraction was monitored by headspace solid-phase microextraction (HS-SPME) coupled with gas-chromatography, while the variation of the composition of the main components was analyzed by 1H NMR. Both techniques allowed the detection of some decomposition products, such as polymers, terpenes, and derivatives of the Maillard process. The analysis of the chemical composition prior to and after bentonite treatment revealed a tendency for the clays to retain specific chemical groups (such as carboxylic acids or double bonds), independent of their particle size. A pair comparison test was conducted in order to detect the sensory differences of the intensity of aroma between the WCO treated with the two different bentonites. In addition, characterization of the bentonite by means of powder X-ray diffraction (XRD) and thermogravimetric measurements (TG) was performed.


Sign in / Sign up

Export Citation Format

Share Document