scholarly journals Effect of the time interval between oocyte retrieval and ICSI on embryo development and reproductive outcomes: a systematic review

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Xue Wang ◽  
YaLing Xiao ◽  
ZhengYi Sun ◽  
JingRan Zhen ◽  
Qi Yu

Abstract Background Intra-cytoplasmic sperm injection (ICSI) is used in assisted reproductive technology (ART) laboratories. However, there is no consensus regarding the precise time intervals within ICSI cycles [oocyte pick up (OPU), oocyte denudation (DN), and ICSI], and results are inconsistent and contradictory. Thus, we aim to evaluate whether there is a concordance regarding the time intervals used in different laboratories and a concrete time that gives better laboratory and reproductive results. Methods A systematic review of the literature until July 25, 2020, was performed with the keywords “Oocyte Denudation/Denudation/Oocyte,” “Intra-cytoplasmic Sperm Injection/ICSI,” “Oocyte/Oocyte maturation/ cumulus,” and “Cumulus removal/ removal.” Articles and abstracts in English and involving human subjects referring to the effects of oocyte DN time on embryo development and clinical outcomes were included. Results Of the 294 evaluated articles, 24 (including 20 full articles and 4 abstracts) were included in this review. Eighteen studies analysed the effect of OPU-DN time on embryo development and clinical outcomes. Most of these studies concluded that OPU-DN time did not influence ICSI outcomes, but some suggested that oocytes should be incubated for a short time before DN to improve oocyte maturity and enhance ICSI outcomes. In addition to reports on positive or negligible effects, adverse effects were reported in 12 studies on DN-ICSI timing. Neither OPU-DN nor DN-ICSI time could improve live birth rate. Conclusions Oocytes should be pre-incubated for a short duration (preferably < 4 h) before DN according to the ART laboratory schedule. More randomised controlled trials are warranted to clarify the effect of DN-ICSI timing on ICSI outcomes.

2021 ◽  
pp. 1-6
Author(s):  
Jacob R. Morey ◽  
Xiangnan Zhang ◽  
Kurt A. Yaeger ◽  
Emily Fiano ◽  
Naoum Fares Marayati ◽  
...  

<b><i>Background and Purpose:</i></b> Randomized controlled trials have demonstrated the importance of time to endovascular therapy (EVT) in clinical outcomes in large vessel occlusion (LVO) acute ischemic stroke. Delays to treatment are particularly prevalent when patients require a transfer from hospitals without EVT capability onsite. A computer-aided triage system, Viz LVO, has the potential to streamline workflows. This platform includes an image viewer, a communication system, and an artificial intelligence (AI) algorithm that automatically identifies suspected LVO strokes on CTA imaging and rapidly triggers alerts. We hypothesize that the Viz application will decrease time-to-treatment, leading to improved clinical outcomes. <b><i>Methods:</i></b> A retrospective analysis of a prospectively maintained database was assessed for patients who presented to a stroke center currently utilizing Viz LVO and underwent EVT following transfer for LVO stroke between July 2018 and March 2020. Time intervals and clinical outcomes were compared for 55 patients divided into pre- and post-Viz cohorts. <b><i>Results:</i></b> The median initial door-to-neuroendovascular team (NT) notification time interval was significantly faster (25.0 min [IQR = 12.0] vs. 40.0 min [IQR = 61.0]; <i>p</i> = 0.01) with less variation (<i>p</i> &#x3c; 0.05) following Viz LVO implementation. The median initial door-to-skin puncture time interval was 25 min shorter in the post-Viz cohort, although this was not statistically significant (<i>p</i> = 0.15). <b><i>Conclusions:</i></b> Preliminary results have shown that Viz LVO implementation is associated with earlier, more consistent NT notification times. This application can serve as an early warning system and a failsafe to ensure that no LVO is left behind.


Biology ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 178
Author(s):  
Jordi Ribas-Maynou ◽  
Marc Yeste ◽  
Albert Salas-Huetos

Achieving high embryo quality following IVF and ICSI procedures is a key factor in increasing fertility outcomes in human infertile couples. While the male factor is known to underlie infertility in about 50% of cases, studies performed in human infertile couples have not been able to define the precise effect of sperm affectations upon embryo development. This lack of consistency is, in most cases, due to the heterogeneity of the results caused by the multiple male and female factors that mask the concrete effect of a given sperm parameter. These biases can be reduced with the use of animal gametes, being a good approach for basic researchers to design more homogeneous studies analyzing the specific consequences of a certain affectation. Herein, we conducted a systematic review (March 2020) that assessed the relationship between sperm oxidative stress alterations and IVF/ICSI outcomes in nonhumans mammals. The review was conducted according to PRISMA guidelines and using the MEDLINE-PubMed and EMBASE databases. Thirty articles were included: 11 performed IVF, 17 conducted ICSI, and two carried out both fertilization methods. Most articles were conducted in mouse (43%), cattle (30%) and pig models (10%). After IVF treatments, 80% of studies observed a negative effect of sperm oxidative stress on fertilization rates, and 100% of studies observed a negative effect on blastocyst rates. After ICSI treatments, a positive relationship of sperm oxidative stress with fertilization rates (75% of studies) and with blastocyst rates (83% of studies) was found. In conclusion, the present systematic review shows that sperm oxidative stress is associated with a significant reduction in fertilization rates and in vitro embryo development.


BMJ Open ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. e051711
Author(s):  
Chaoyang Li ◽  
Nazrul Islam ◽  
Juan Pablo Gutierrez ◽  
Ben Lacey ◽  
Ronald L Moolenaar ◽  
...  

IntroductionPrevious evidence from several countries, including China, Italy, Mexico, UK and the USA, indicates that among patients with confirmed COVID-19 who were hospitalised, diabetes, obesity and hypertension might be important risk factors for severe clinical outcomes. Several preliminary systematic reviews and meta-analyses have been conducted on one or more of these non-communicable diseases, but the findings have not been definitive, and recent evidence has become available from many more populations. Thus, we aim to conduct a systematic review and meta-analysis of observational studies to assess the relationship of diabetes, obesity and hypertension with severe clinical outcomes in patients with COVID-19.Method and analysisWe will search 16 major databases (MEDLINE, Embase, Global Health, CAB Abstracts, PsycINFO, CINAHL, Academic Research Complete, Africa Wide Information, Scopus, PubMed Central, ProQuest Central, WHO Virtual Health Library, Homeland Security COVID-19 collection, SciFinder, Clinical Trials and Cochrane Library) for articles published between December 2019 and December 2020. We will follow the Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols 2016 guidelines for the design and reporting the results. We will include observational studies that assess the associations of pre-existing diabetes, obesity and hypertension in patients with COVID-19 with risk of severe clinical outcomes such as intensive care unit admission, receiving mechanical ventilation or death. Stata V.16.1 and R-Studio V.1.4.1103 statistical software will be used for statistical analysis. Meta-analysis will be used to estimate the pooled risks and to assess potential heterogeneities in risks.Ethics and disseminationThe study was reviewed for human subjects concerns by the US CDC Center for Global Health and determined to not represent human subjects research because it uses data from published studies. We plan to publish results in a peer-reviewed journal and present at national and international conferences.PROSPERO registration numberCRD42021204371.


2010 ◽  
Vol 22 (1) ◽  
pp. 302 ◽  
Author(s):  
T. Nabhan ◽  
R. A. Satrapa ◽  
R. A. L. Simões ◽  
C. F. Silva ◽  
E. M. Razza ◽  
...  

There is evidence that deleterious effects of heat shock (HS) on fertility are less pronounced in breeds tolerant to high temperatures, due mainly to differences in their thermoregulatory capacity. In vitro experiments have shown that Bos indicus embryos are more resistant to HS than Bos taurus. In order to better understand the differences related to HS resistance between Bos indicus and Bos taurus, the main objective of this study was to determine if tolerance to HS is caused by genetic contribution from the oocyte, spermatozoa, or both. Additionally, the influence of the time between collection of ovaries in the abattoir and oocyte aspiration in the laboratory on early embryo development was ascertained. In experiment 1, oocytes from Nellore and crossbreed Holstein cows (cHOL) were collected in a local abattoir, matured and fertilized using semen (n = 6 for each breed) from Nellore (NEL), Angus (ANG), Brahman (BRA,) and Gir (GIR) bulls. In experiment 2, oocytes from Nellore and Holstein (HOL) cows were collected in an abattoir and the oocytes were aspirated in the laboratory 4 (group 4 h) or 6.5 h (group 6.5 h) later, matured and fertilized using semen (n = 6 for each breed) from NEL, GIR, and HOL. In both experiments, 96 h post-insemination (hpi), embryos with > 16 cells were separated in 2 groups: control and HS. In the control group the embryos were cultured at 39°C, whereas in the HS group the embryos were submitted to 41°C for 12 h, and then returned to 39°C. In experiments 1 and 2 the results were analyzed by ANOVA (Proc MIXED, SAS Institute, Cary, NC, USA). In experiment 1, there was no effect of HS on blastocyst and hatched blastocyst rates in all breeds studied. The percentage of oocytes that cleaved and reached the morula stage was significantly lower (P < 0.05) in cHOL × GIR compared with the other breeds. Additionally, blastocyst rate was higher in cHOL × NEL than in cHOL × ANG and cHOL × GIR (P < 0.05). In experiment 2, cleavage, morula, and blastocyst rates in group 4 h were higher (P < 0.05) compared with group 6.5 h. The HS decreased blastocyst rates in all breeds (NEL × NEL, HOL × HOL, and HOL × GIR), and in both time intervals (4 and 6.5 h). The breed NEL × NEL had higher cleavage rate (P < 0.05) for both time intervals compared with HOL × HOL and HOL × GIR. In addition, Nellore oocytes fertilized with Nellore semen (NEL × NEL) originated higher blastocyst rates (P < 0.05) in control and HS group than the other breeds. We conclude that (a) embryos from Holstein are more susceptible to HS than embryos from crossbred Holstein; (b) the oocyte is more important than the spermatozoa for the development of thermotolerance, because the breed of the bull did not influence embryo development after HS; (c) in vitro early embryonic development was impaired by increasing (from 4 to 6.5 h) the time interval between ovary collection and oocyte aspiration. Fellowships to T. Nabhan from CAPES and to R. A. Satrapa, R. A. L. Simoes, and E. M. Razza from FAPESP. Funding from FAPESP (Sao Paulo, Brazil).


1963 ◽  
Vol 44 (3) ◽  
pp. 475-480 ◽  
Author(s):  
R. Grinberg

ABSTRACT Radiologically thyroidectomized female Swiss mice were injected intraperitoneally with 131I-labeled thyroxine (T4*), and were studied at time intervals of 30 minutes and 4, 28, 48 and 72 hours after injection, 10 mice for each time interval. The organs of the central nervous system and the pituitary glands were chromatographed, and likewise serum from the same animal. The chromatographic studies revealed a compound with the same mobility as 131I-labeled triiodothyronine in the organs of the CNS and in the pituitary gland, but this compound was not present in the serum. In most of the chromatographic studies, the peaks for I, T4 and T3 coincided with those for the standards. In several instances, however, such an exact coincidence was lacking. A tentative explanation for the presence of T3* in the pituitary gland following the injection of T4* is a deiodinating system in the pituitary gland or else the capacity of the pituitary gland to concentrate T3* formed in other organs. The presence of T3* is apparently a characteristic of most of the CNS (brain, midbrain, medulla and spinal cord); but in the case of the optic nerve, the compound is not present under the conditions of this study.


Sign in / Sign up

Export Citation Format

Share Document