scholarly journals EndMT: New findings on the origin of myofibroblasts in endometrial fibrosis of intrauterine adhesions

2022 ◽  
Vol 20 (1) ◽  
Author(s):  
Chengcheng Xu ◽  
Meng Bao ◽  
Xiaorong Fan ◽  
Jin Huang ◽  
Changhong Zhu ◽  
...  

Abstract Background Intrauterine adhesion (IUA) is one of the leading causes of infertility and the main clinical challenge is the high recurrence rate. The key to solving this dilemma lies in elucidating the mechanisms of endometrial fibrosis. The aim of our team is to study the mechanism underlying intrauterine adhesion fibrosis and the origin of fibroblasts in the repair of endometrial fibrosis. Methods Our experimental study involving an animal model of intrauterine adhesion and detection of fibrosis-related molecules. The levels of molecular factors related to the endothelial-to-mesenchymal transition (EndMT) were examined in a rat model of intrauterine adhesion using immunofluorescence, immunohistochemistry, qPCR and Western blot analyses. Main outcome measures are levels of the endothelial marker CD31 and the mesenchymal markers alpha-smooth muscle actin (α-SMA) and vimentin. Results Immunofluorescence co-localization of CD31 and a-SMA showed that 14 days after moulding, double positive cells for CD31 and a-SMA could be clearly observed in the endometrium. Decreased CD31 levels and increased α-SMA and vimentin levels indicate that EndMT is involved in intrauterine adhesion fibrosis. Conclusions Endothelial cells promote the emergence of fibroblasts via the EndMT during the endometrial fibrosis of intrauterine adhesions.

2021 ◽  
Author(s):  
Chengcheng Xu ◽  
Meng Bao ◽  
Xiaorong Fan ◽  
Jin Huang ◽  
Changhong Zhu ◽  
...  

Abstract BackgroundIntrauterine adhesion (IUA) is one of the leading causes of infertility and the main clinical challenge is the high recurrence rate. The key to solving this dilemma lies in elucidating the mechanisms of endometrial fibrosis. The aim of our team is to study the mechanism underlying intrauterine adhesion fibrosis and the origin of fibroblasts in the repair of endometrial fibrosis.MethodsOur experimental study involving an animal model of intrauterine adhesion and detection of fibrosis-related molecules. The levels of molecular factors related to the endothelial-to-mesenchymal transition (EndMT) were examined in a rat model of intrauterine adhesion using immunofluorescence, immunohistochemistry, qPCR and Western blot analyses. Main outcome measures are levels of the endothelial marker CD31 and the mesenchymal markers alpha-smooth muscle actin (α-SMA) and vimentin.ResultsImmunofluorescence co-localization of CD31 and a-SMA showed that 14 days after moulding, double positive cells for CD31 and a-SMA could be clearly observed in the endometrium. Decreased CD31 levels and increased α-SMA and vimentin levels indicate that EndMT is involved in intrauterine adhesion fibrosis.ConclusionsEndothelial cells promote the emergence of fibroblasts via the EndMT during the endometrial fibrosis of intrauterine adhesions.Trial registrationNot applicable.


2019 ◽  
Vol 39 (10) ◽  
pp. 2168-2191 ◽  
Author(s):  
Bronson A. Haynes ◽  
Li Fang Yang ◽  
Ryan W. Huyck ◽  
Eric J. Lehrer ◽  
Joshua M. Turner ◽  
...  

Objective: Endothelial cells (EC) in obese adipose tissue (AT) are exposed to a chronic proinflammatory environment that may induce a mesenchymal-like phenotype and altered function. The objective of this study was to establish whether endothelial-to-mesenchymal transition (EndoMT) is present in human AT in obesity and to investigate the effect of such transition on endothelial function and the endothelial particulate secretome represented by extracellular vesicles (EV). Approach and Results: We identified EndoMT in obese human AT depots by immunohistochemical co-localization of CD31 or vWF and α-SMA (alpha-smooth muscle actin). We showed that AT EC exposed in vitro to TGF-β (tumor growth factor-β), TNF-α (tumor necrosis factor-α), and IFN-γ (interferon-γ) undergo EndoMT with progressive loss of endothelial markers. The phenotypic change results in failure to maintain a tight barrier in culture, increased migration, and reduced angiogenesis. EndoMT also reduced mitochondrial oxidative phosphorylation and glycolytic capacity of EC. EVs produced by EC that underwent EndoMT dramatically reduced angiogenic capacity of the recipient naïve ECs without affecting their migration or proliferation. Proteomic analysis of EV produced by EC in the proinflammatory conditions showed presence of several pro-inflammatory and immune proteins along with an enrichment in angiogenic receptors. Conclusions: We demonstrated the presence of EndoMT in human AT in obesity. EndoMT in vitro resulted in production of EV that transferred some of the functional and metabolic features to recipient naïve EC. This result suggests that functional and molecular features of EC that underwent EndoMT in vivo can be disseminated in a paracrine or endocrine fashion and may induce endothelial dysfunction in distant vascular beds.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Monika Tooulou ◽  
Pieter Demetter ◽  
Anwar Hamade ◽  
Caroline Keyzer ◽  
Joëlle L. Nortier ◽  
...  

Background. Encapsulating peritoneal sclerosis (EPS) is a rare but serious complication of peritoneal dialysis (PD). Besides the endothelial-to-mesenchymal transition (EMT), recently peritoneal adipocytes emerged as a potential source of fibrosis. We performed immunohistochemistry to approach EMT and to localize peritoneal adipocytes in peritoneal biopsies from PD-related EPS patients.Material and Methods. We investigated tissue expression of podoplanin, cytokeratin AE1/AE3 (mesothelium), calretinin (adipocytes), alpha-smooth muscle actin [α-SMA] (mesenchymal cells), interstitial mononuclear cell inflammation, and neoangiogenesis (CD3, CD4, CD8, CD20, CD68, and CD31 immunostainings, resp.).Results. Three patients (1 man/2 women; 17, 64, and 39 years old, resp.) developed EPS after 21, 90, and 164 months of PD therapy. In patients with EPS, we observed (1) loss of AE1/AE3 cytokeratin+ mesothelial cells without any evidence of migration into the interstitium, (2) disappearance of adipose tissue, (3) diffuse infiltration of calretinin+ cells in the areas of submesothelial fibrosis with a huge number ofα-SMA and calretinin+ fusiform cells, and (4) increased vascular density.Conclusion. We report that the involvement of EMT in peritoneal fibrosis is difficult to demonstrate and that the calretinin+ adipocytes might be an underestimated component and a new source of myofibroblasts in peritoneal remodeling during PD-related EPS.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Catherine E. Winbanks ◽  
Ian A. Darby ◽  
Kristen J. Kelynack ◽  
Dodie Pouniotis ◽  
Gavin J. Becker ◽  
...  

Recognised by theirde novoexpression of alpha-smooth muscle actin (SMA), recruitment of myofibroblasts is key to the pathogenesis of fibrosis in chronic kidney disease. Increasingly, we realise that epithelial-mesenchymal transition (EMT) may be an important source of these cells. In this study we describe a novel model of renal EMT. Rat kidney explants were finely diced on gelatin-coated Petri dishes and cultured in serum-supplemented media. Morphology and immunocytochemistry were used to identify mesenchymal (vimentin+, α-smooth muscle actin (SMA)+, desmin+), epithelial (cytokeratin+), and endothelial (RECA+) cells at various time points. Cell outgrowths were all epithelial in origin (cytokeratin+) at day 3. By day 10, 50 ± 12% (mean ± SE) of cytokeratin+ cells double-labelled for SMA, indicating EMT. Lectin staining established a proximal tubule origin. By day 17, cultures consisted only of myofibroblasts (SMA+/cytokeratin−). Explanting is a reproducibleex vivomodel of EMT. The ability to modify this change in phenotype provides a useful tool to study the regulation and mechanisms of renal tubulointerstitial fibrosis.


2017 ◽  
Vol 42 (1) ◽  
pp. 357-372 ◽  
Author(s):  
Yin Xiang ◽  
Yachen Zhang ◽  
Yong Tang ◽  
Qianhui Li

Background/Aims: Endothelial-to-mesenchymal transition (EndMT) plays significant roles under various pathological conditions including cardiovascular diseases, fibrosis, and cancer. EndMT of endothelial progenitor cells (EPCs) contributes to neointimal hyperplasia following cell therapy Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is a long non-coding RNA (lncRNA) that promotes metastasis and cancer. MicroRNA-145 (miR-145) is a tumor suppressor that has been reported to inhibit SMAD3-mediated epithelial-to-mesenchymal transition (EMT) of cancer cells. In the present study, we investigated the role of MALAT1 and miR-145 in EndMT of human circulating EPCs induced by transforming growth factor beta1 (TGF-β1). Methods: Human circulating EPCs were isolated and characterized by fluorescence-activated cell sorting (FACS). Expression levels of EndMT markers were assessed by qRT-PCR and western blotting. Alpha-smooth muscle actin (α-SMA) expression was measured by cell immunofluorescence staining. The regulatory relationship between MALAT1 and miR-145 and its target genes, TGFBR2 (TGFβ receptortype II) and SMAD3 (mothers against decapentaplegic homolog 3) was analyzed using the luciferase reporter assay. Results: We found that EndMT of EPCs induced by TGF-β1 is accompanied by increased MALAT1 expression and decreased miR-145 expression, and MALAT1 and miR-145 directly bind and reciprocally repress each other in these cells. Dual-Luciferase Reporter assay indicated that miR-145 inhibits TGF-β1-induced EndMT by directly targeting TGFBR2 and SMAD3. Conclusions: MALAT1 modulates TGF-β1-induced EndMT of EPCs through regulation of TGFBR2 and SMAD3 via miR-145. Thus, the MALAT1-miR-145-TGFBR2/SMAD3 signaling pathway plays a key role in TGF-β1-induced EndMT.


2021 ◽  
Vol 14 ◽  
Author(s):  
Hanaa Wanas ◽  
Zeinab El Shereef ◽  
Laila Rashed ◽  
Basma Emad Aboulhoda

Background: Idiopathic pulmonary fibrosis (IPF) is a serious disease with high mortality rate. Activation of transforming growth factor (TGF)-β1 production and signalling is considered the corner stone in the epithelial-mesenchymal transition (EMT) process. EMT plays a central role in development of fibrosis in many organs including the lungs. Activated platelets is an important source of TGF-β1 and play a pivotal role in EMT and fibrosis process. The antiplatelet, ticagrelor was previously found to inhibit the EMT in different types of cancer cells, but its ability to serve as an anti-pulmonary fibrosis (PF) agent was not previously investigated. Objective: In this study, we aim to investigate the potential ability of ticagrelor to ameliorate bleomycin-induced fibrosis in rats. Methods: PF was induced in rats by intratracheal BLM at a dose of 3 mg/kg. The effect of daily daily 20 mg/kg oral ticagrelor on different histological and biochemical parameters of fibrosis was investigated. Results: Our results revealed that ticagrelor can alleviate lung fibrosis. We found that ticagrelor inhibited TGF-β1 production and suppressed Smad3 activation and signaling pathway with subsequent inhibition of Slug and Snail. In addition, ticagrelor antagonized PI3K/AKT/mTOR pathway signaling. Moreover, ticagrelor inhibited the EMT that revealed by its ability to up-regulate the epithelial markers as E-cadherin (E-cad) and to decrease the expression of the mesenchymal markers as vimentin (VIM) and alpha-smooth muscle actin (α-SMA). Conclusion: Our results suggest that the P2Y12 inhibitor, ticagrelor may have a therapeutic potential in reducing the progression of PF.


2017 ◽  
Vol 31 (2) ◽  
pp. 71-77 ◽  
Author(s):  
Jae-Min Shin ◽  
Ju-Hyung Kang ◽  
Seoung-Ae Lee ◽  
Il-Ho Park ◽  
Heung-Man Lee

Purpose Doxycycline has antibacterial and anti-inflammatory effects, and it also suppresses collagen biosynthesis. This study aimed to confirm the effects and mechanism of doxycycline on transforming growth factor (TGF) beta 1 induced epithelial-mesenchymal transition and cell migration in A549 and primary nasal epithelial cells. Methods A 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide assay and phalloidin-fluorescein isothiocyanate staining were used to evaluate cytotoxicity and cellular morphologic changes. Western blot and immunofluorescence staining were used to determine the expression levels of E-cadherin, vimentin, alpha-smooth muscle actin, fibronectin, phosphorylated Smad2/3, and mitogen-activated protein kinases. Scratch and transwell migration assays were used to assess cellular migration ability. Results Doxycycline (0-10 μg/mL) had no significant cytotoxic effects in A549 and primary nasal epithelial cells. Increased expression of mesenchymal markers, including vimentin, alpha-smooth muscle actin, and fibronectin in TGF beta 1 induced A549 cells were downregulated by doxycycline treatment. In contrast, E-cadherin expression was upregulated in TGF beta 1 induced A549 cells. An in vitro cell migration assay showed that doxycycline also inhibited the ability of TGF beta 1 induced migration. Doxycycline treatment suppressed the activation of Smad2/3 and p38, whereas its inhibitory effects were similar to each element-specific inhibitor in A549 and primary nasal epithelial cells. Conclusion Doxycycline inhibited TGF beta 1 induced epithelial-to-mesenchymal transition and migration by targeting Smad2/3 and p38 signal pathways in respiratory epithelial cells.


Planta Medica ◽  
2016 ◽  
Vol 83 (09) ◽  
pp. 761-769 ◽  
Author(s):  
Xiao-han Jiang ◽  
Qing-qing Wu ◽  
Yang Xiao ◽  
Yuan Yuan ◽  
Zheng Yang ◽  
...  

AbstractEvodiamine, a major component of Evodia rutaecarpa, can protect the myocardium against injury induced by atherosclerosis and ischemia-reperfusion. However, the effect of evodiamine against cardiac fibrosis remains unclear. This study aims to investigate the possible effect and mechanism involved in the function of evodiamine on isoproterenol-induced cardiac fibrosis and endothelial-to-mesenchymal transition. Isoproterenol was used to induce cardiac fibrosis in mice, and evodiamine was gavaged simultaneously. After 14 days, cardiac function was accessed by echocardiography. The extent of cardiac fibrosis and hypertrophy was evaluated by pathological and molecular analyses. The extent of endothelial-to-mesenchymal transition was evaluated by the expression levels of CD31, CD34, α-smooth muscle actin, and vimentin by immunofluorescence staining and Western blot analysis. After 14 days, the heart weight/body weight ratio and heart weight/tibia length ratio revealed no significant difference between the isoproterenol group and the isoproterenol/evodiamine-treated groups, whereas the increased heart weight was reduced in the isoproterenol/evodiamine-treated groups. Echocardiography revealed that interventricular septal thickness and left ventricular posterior wall thickness at the end diastole decreased in the evodiamine-treated groups. Evodiamine reduced isoproterenol-induced cardiac fibrosis as accessed by normalization in collagen deposition and gene expression of hypertrophic and fibrotic markers. Evodiamine also prevented endothelial-to-mesenchymal transition as evidenced by the increased expression levels of CD31 and CD34, decreased expression levels of α-smooth muscle actin and vimentin, and increased microvascular density in the isoproterenol/evodiamine-treated mice hearts. Furthermore, isoproterenol-induced activation of transforming growth factor-β1/Smad signal was also blunted by evodiamine. Therefore, evodiamine may prevent isoproterenol-induced cardiac fibrosis by regulating endothelial-to-mesenchymal transition, which is probably mediated by the blockage of the transforming growth factor-β1/Smad pathway.


Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 226
Author(s):  
Carmen Ciavarella ◽  
Ilenia Motta ◽  
Francesco Vasuri ◽  
Silvia Fittipaldi ◽  
Sabrina Valente ◽  
...  

The endothelial to mesenchymal transition (End–MT) can be associated with vascular calcification, by providing mesengenic progenitors. In this study, we investigated a link between End–MT and the osteogenic process and explored the involvement of miR-30a-5p and miR-30d as potential regulators of these processes. End–MT was induced in Human Umbilical Vein Endothelial Cells (HUVEC) through transforming growth factor-β1 (TGF-β1), TGFβ-3 and tumor necrosis factor-α (TNF-α), for 24 h and 6 days. End–MT mediators, mesenchymal and osteo/chondrogenic markers were analyzed through Real-Time PCR, immunofluorescence, flow cytometry and Western Blot. miR-30a-5p and miR-30d over-expression was carried out in HUVEC to explore their effects on End–MT and osteogenic differentiation. HUVEC at 24 h and 6 days gained mesenchymal morphology markers, including matrix metalloproteinase 9 (MMP-9), SLUG, VIMENTIN and α-smooth muscle actin (α-SMA), and a significant migratory potential, notably with TNF-α. After 6 days, the osteo/chondrogenic markers runt-related transcription factor 2 (RUNX-2) and SRY box transcription factor 9 (SOX-9) were upregulated. At this time point, miR-30a-5p and miR-30d decreased. Over-expression of miR-30a-5p and miR-30d affected End–MT mediators and the osteogenic potency in HUVEC, by reducing SLUG, VIMENTIN and RUNX-2. Our data suggest that End–MT represents a key link between inflammation and vascular calcification. Further, miR-30a-5p and miR-30d can regulate both the End–MT and the osteogenic processes, prompting future studies for exploring their potential use as therapeutic targets or biomarkers in vascular diseases.


Sign in / Sign up

Export Citation Format

Share Document