scholarly journals Edible red seaweed Campylaephora hypnaeoides J. Agardh alleviates obesity and related metabolic disorders in mice by suppressing oxidative stress and inflammatory response

2022 ◽  
Vol 19 (1) ◽  
Author(s):  
Shigeru Murakami ◽  
Chihiro Hirazawa ◽  
Rina Yoshikawa ◽  
Toshiki Mizutani ◽  
Takuma Ohya ◽  
...  

Abstract Background The obesity epidemic has become a serious public health problem in many countries worldwide. Seaweed has few calories and is rich in active nutritional components necessary for health promotion and disease prevention. The aim of this study was to investigate the effects of the Campylaephora hypnaeoides J. Agardh (C. hypnaeoides), an edible seaweed traditionally eaten in Japan, on high-fat (HF) diet-induced obesity and related metabolic diseases in mice. Methods Male C57BL/6J mice were randomly divided into the following groups: normal diet group, HF diet group, HF diet supplemented with 2% C. hypnaeoides, and HF diet supplemented with 6% C. hypnaeoides. After 13 weeks of treatment, the weight of the white adipose tissue and liver, and the serum levels of glucose, insulin, adipokines, and lipids were measured. Hepatic levels of adipokines, oxidant markers, and antioxidant markers were also determined. Insulin resistance was assessed by a glucose tolerance test. Polysaccharides of C. hypnaeoides were purified and their molecular weight was determined by high-performance seize exclusion chromatography. The anti-inflammatory effects of purified polysaccharides were evaluated in RAW264.7 cells. Results Treatment of HF diet-induced obese mice with C. hypnaeoides for 13 weeks suppressed the increase in body weight and white adipose tissue weight. It also ameliorated insulin resistance, hyperglycemia, hepatic steatosis, and hypercholesterolemia. The ingestion of an HF diet increased serum levels of malondialdehyde (MDA), tumor necrosis factor α (TNF-α), and monocyte chemoattractant protein-1 (MCP-1), while it decreased serum adiponectin levels. In the liver, an HF diet markedly increased the MDA, TNF-α, and interleukin-6 (IL-6) levels, while it decreased glutathione and superoxide dismutase. These metabolic changes induced by HF diet feeding were ameliorated by dietary C. hypnaeoides. Purified polysaccharides and ethanol extract from C. hypnaeoides inhibited the lipopolysaccharide-induced overproduction of nitric oxide and TNF-α in macrophage RAW264.7 cells. Conclusions The present results indicated that C. hypnaeoides was able to alleviate HF diet-induced metabolic disorders, including obesity, hyperglycemia, hepatic steatosis, and hypercholesterolemia by attenuating inflammation and improving the antioxidant capacity in mice. Polysaccharides and polyphenols may be involved in these beneficial effects of C. hypnaeoides.

2021 ◽  
Author(s):  
Shigeru Murakami ◽  
Chihiro Hirazawa ◽  
Rina Yoshikawa ◽  
Toshiki Mizutani ◽  
Takuma Ohya ◽  
...  

Abstract Background: The obesity epidemic has become a serious public health problem in many countries worldwide. Seaweed has few calories and is rich in active nutritional components necessary for health promotion and disease prevention. The aim of this study was to investigate the effects of the Campylaephora hypnaeoides J. Agardh (C. hypnaeoides), an edible seaweed traditionally eaten in Japan, on high-fat (HF) diet-induced obesity and related metabolic diseases in mice.Methods: Male C57BL/6J mice were randomly divided into the following groups: normal diet group, HF diet group, HF diet supplemented with 2% C. hypnaeoides, and HF diet supplemented with 6% C. hypnaeoides. After 13 weeks of treatment, the weight of the white adipose tissue and liver, and the serum levels of glucose, insulin, adipokines, and lipids were measured. Hepatic levels of adipokines, oxidant markers, and antioxidant markers were also determined. Insulin resistance was assessed by a glucose tolerance test. Polysaccharides of C. hypnaeoides were purified and their molecular weight was determined by high-performance seize exclusion chromatography. The anti-inflammatory effects of purified polysaccharides were evaluated in RAW264.7 cells. Results: Treatment of HF diet-induced obese mice with C. hypnaeoides for 13 weeks suppressed the increase in body weight and white adipose tissue weight. It also ameliorated insulin resistance, diabetes, hepatic steatosis, and hypercholesterolemia. The ingestion of an HF diet increased serum levels of malondialdehyde (MDA), tumor necrosis factor a (TNF-a), and monocyte chemoattractant protein-1 (MCP-1), while it decreased serum adiponectin levels. In the liver, an HF diet markedly increased the MDA, TNF-a, and interleukin-6 (IL-6) levels, while it decreased glutathione (GSH) and superoxide dismutase (SOD). These metabolic changes induced by HF diet feeding were ameliorated by dietary C. hypnaeoides. Purified polysaccharides and ethanol extract from C. hypnaeoides inhibited the lipopolysaccharide-induced overproduction of nitric oxide and TNF-a in macrophage RAW264.7 cells. Conclusions: The present results indicated that C. hypnaeoides was able to alleviate HF diet-induced metabolic disorders, including obesity, diabetes, hepatic steatosis, and hypercholesterolemia by attenuating inflammation and improving the antioxidant capacity in mice. Polysaccharides and polyphenols may be involved in these beneficial effects of C. hypnaeoides.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Masayuki Sugimoto ◽  
Hidenori Arai ◽  
Yukinori Tamura ◽  
Toshinori Murayama ◽  
Koh Ono ◽  
...  

Mulberry leaf (ML) is commonly used to feed silkworms. Previous study showed that ML ameliorates atherosclerosis. However, its mechanism is not completely understood. Because dysregulated production of adipocytokines is involved in the development of the metabolic syndrome and cardiovascular disease, we examined the effect of ML on the production of adipocytokines and metabolic disorders related to the metabolic syndrome, and compared its effect with that of a PPARγ agonist, pioglitazone (Pio). By treating obese diabetic db/db mice with ML, Pio, and their combination, we investigated the mechanism by which they improve metabolic disorders. In this study, db/+m (lean control) and db/db mice were fed a standard diet with or without 3% (w/w) ML and/or 0.01% (w/w) Pio for 12 weeks from 9 weeks of age. At the end of the experiment we found that ML decreased plasma glucose and triglyceride by 32% and 30%, respectively. Interestingly, administration of ML in addition to Pio showed additive effects; further 40% and 30% reduction in glucose and triglyceride compared with Pio treatment, respectively. Moreover, administration of ML in addition to Pio suppressed the body weight increase by Pio treatment and reduced visceral/subcutaneous fat ratio by 20% compared with control db/db mice. Importantly, ML treatment increased expression of adiponectin in white adipose tissue (WAT) by 40%, which was only found in db/db mice, not in control db/+m mice. Combination of ML and Pio increased plasma adiponectin concentrations by 25% and its expression in WAT by 17% compared with Pio alone. In contrast, ML decreased expression of TNF-α and MCP-1 by 25% and 20%, respectively, and the addition of Pio resulted in a further decrease of these cytokines by about 45%. To study the mechanism, we examined the role of oxidative stress. ML decreased the amount of lipid peroxides by 43% and the expression of NADPH oxidase subunits in WAT, which was consistent with the results of TNF-α and MCP-1. Thus our results indicate that ML ameliorates adipocytokine dysregulation by inhibiting oxidative stress in WAT of obese mice, and that ML may have a potential for the treatment of the metabolic syndrome as well as reducing adverse effects of Pio.


2009 ◽  
Vol 296 (5) ◽  
pp. E1164-E1171 ◽  
Author(s):  
Victoria J. Vieira ◽  
Rudy J. Valentine ◽  
Kenneth R. Wilund ◽  
Nirav Antao ◽  
Tracy Baynard ◽  
...  

Adipose tissue inflammation causes metabolic disturbances, including insulin resistance and hepatic steatosis. Exercise training (EX) may decrease adipose tissue inflammation, thereby ameliorating such disturbances, even in the absence of fat loss. The purpose of this study was to 1) compare the effects of low-fat diet (LFD), EX, and their combination on inflammation, insulin resistance, and hepatic steatosis in high-fat diet-induced obese mice and 2) determine the effect of intervention duration (i.e., 6 vs. 12 wk). C57BL/6 mice ( n = 109) fed a 45% fat diet (HFD) for 6 wk were randomly assigned to an EX (treadmill: 5 days/wk, 6 or 12 wk, 40 min/day, 65–70% V̇o2max) or sedentary (SED) group. Mice remained on HFD or were placed on a 10% fat diet (LFD) for 6 or 12 wk. Following interventions, fat pads were weighed and expressed relative to body weight; hepatic steatosis was assessed by total liver triglyceride and insulin resistance by HOMA-IR and glucose AUC. RT-PCR was used to determine adipose gene expression of MCP-1, F4/80, TNF-α, and leptin. By 12 wk, MCP-1, F4/80, and TNF-α mRNA were reduced by EX and LFD. Exercise ( P = 0.02), adiposity ( P = 0.03), and adipose F4/80 ( P = 0.02) predicted reductions in HOMA-IR ( r2 = 0.75, P < 0.001); only adiposity ( P = 0.04) predicted improvements in hepatic steatosis ( r2 = 0.51, P < 0.001). Compared with LFD, EX attenuated increases in adiposity, hepatic steatosis, and adipose MCP-1 expression from 6 to 12 wk. There are unique metabolic consequences of a sedentary lifestyle and HFD that are most evident long term, highlighting the importance of both EX and LFD in preventing obesity-related metabolic disturbances.


1990 ◽  
Vol 18 (3) ◽  
pp. 492-493 ◽  
Author(s):  
MARGARET E. GRAHAM ◽  
ERIC FINLEY ◽  
RICHARD G. VERNON

2005 ◽  
Vol 51 (3) ◽  
pp. 578-585 ◽  
Author(s):  
Dick C Chan ◽  
Gerald F Watts ◽  
Theodore WK Ng ◽  
Yoshiaki Uchida ◽  
Naohiko Sakai ◽  
...  

Abstract Background: Adipocytokines are bioactive peptides that may play an important role in the regulation of glucose and lipid metabolism. In this study, we investigated the association of plasma adipocytokine concentrations with markers of triglyceride-rich lipoprotein (TRL) metabolism in men. Methods: Fasting adiponectin, leptin, resistin, interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), apolipoprotein (apo) B-48, apo C-III, and remnant-like particle (RLP)-cholesterol concentrations were measured by immunoassays and insulin resistance by homeostasis assessment (HOMA) score in 41 nondiabetic men with a body mass index of 22–35 kg/m2. Visceral and subcutaneous adipose tissue masses (ATMs) were determined by magnetic resonance imaging and total ATM by bioelectrical impedance. Results: In univariate regression, plasma adiponectin and leptin concentrations were inversely and directly associated with plasma apoB-48, apoC-III, RLP-cholesterol, triglycerides, VLDL-apoB, and VLDL-triglycerides (P &lt;0.05). Resistin, IL-6, and TNF-α were not significantly associated with any of these variables, except for a direct correction between apoC-III and IL-6 (P &lt;0.05). In multivariate regression including HOMA, age, nonesterified fatty acids, and adipose tissue compartment, adiponectin was an independent predictor of plasma apoB-48 (β coefficient = −0.354; P = 0.048), apoC-III (β coefficient = −0.406; P = 0.012), RLP-cholesterol (β coefficient = −0.377; P = 0.016), and triglycerides (β coefficient = −0.374; P = 0.013). By contrast, leptin was not an independent predictor of these TRL markers. Plasma apoB-48, apoC-III, RLP-cholesterol, and triglycerides were all significantly and positively associated with plasma insulin, HOMA, and visceral, subcutaneous, and total ATMs (P &lt;0.05). Conclusions: These data suggest that the plasma adiponectin concentration may not only link abdominal fat, insulin resistance, and dyslipidemia, but may also exert an independent role in regulating TRL metabolism.


2018 ◽  
Vol 1 (3) ◽  
Author(s):  
Qishu Zhou ◽  
Chunyu Liang ◽  
Yafei Li ◽  
Yi Yan

Objective  To investigate the effect of one-time high-intensity intermittent exercise in white fat autophagy in obese rats and provide a theoretical basis of the molecular mechanism of exercise fat loss. Methods  Eighteen male 3-weeks-old rats were selected and divided into control group fed with normal diet (C), high-fat diet group fed with high fat diet (H). After 16 weeks, there were twelve obesity rats that divided into diet group (HS) and exercise group (HE). The other six control group rats of 19 weeks age were used as the standard (CS group). OE group did the high intensity intermittent exercise once. The CS group and the CS group were kept quietly. Three groups were taken subcutaneous white adipose tissue(S) and epididymal white adipose tissue (E) immediately after exercise. Mensurate the expression of LC3 gene in the tissue using the fluorescent quantitative PCR. Results 1. The expression of LC3 mRNA from white fat tissue was different to the tissues, which the expression of epididymal white adipose tissue of each group was higher than that in subcutaneous white adipose tissue (P <0.01). 2. Compared with CS group, the expression of epididymal white fat adipose tissue LC3 mRNA decreased (P<0.01) and the expression of the subcutaneous white adipose tissue increased from HS group (P <0.05). 3. Compared with OS group, the expression of epididymal white fat adipose tissue LC3 mRNA decreased (P<0.05) and the expression of subcutaneous white adipose tissue decreased from OS group. Conclusions The expression of LC3mRNA in epididymal white fat adipose tissue of rats was significantly higher than that of subcutaneous white fat. The changes of LC3mRNA expression of adipose tissue caused by high-fat diet have tissue differences. One-time high-intensity intermittent exercise can reduce the expression of LC3mRNA in fat tissue of obese rats. Its regulatory mechanism needs to be further studied.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Haruka Kimura ◽  
Tomohisa Nagoshi ◽  
Yuhei Oi ◽  
Akira Yoshii ◽  
Yoshiro Tanaka ◽  
...  

AbstractIncreasing evidence suggests natriuretic peptides (NPs) coordinate inter-organ metabolic crosstalk with adipose tissues and play a critical role in energy metabolism. We recently reported A-type NP (ANP) raises intracellular temperature in cultured adipocytes in a low-temperature-sensitive manner. We herein investigated whether exogenous ANP-treatment exerts a significant impact on adipose tissues in vivo. Mice fed a high-fat-diet (HFD) or normal-fat-diet (NFD) for 13 weeks were treated with or without ANP infusion subcutaneously for another 3 weeks. ANP-treatment significantly ameliorated HFD-induced insulin resistance. HFD increased brown adipose tissue (BAT) cell size with the accumulation of lipid droplets (whitening), which was suppressed by ANP-treatment (re-browning). Furthermore, HFD induced enlarged lipid droplets in inguinal white adipose tissue (iWAT), crown-like structures in epididymal WAT, and hepatic steatosis, all of which were substantially attenuated by ANP-treatment. Likewise, ANP-treatment markedly increased UCP1 expression, a specific marker of BAT, in iWAT (browning). ANP also further increased UCP1 expression in BAT with NFD. Accordingly, cold tolerance test demonstrated ANP-treated mice were tolerant to cold exposure. In summary, exogenous ANP administration ameliorates HFD-induced insulin resistance by attenuating hepatic steatosis and by inducing adipose tissue browning (activation of the adipose tissue thermogenic program), leading to in vivo thermogenesis during cold exposure.


Sign in / Sign up

Export Citation Format

Share Document