scholarly journals Investigating receptor-mediated antibody transcytosis using blood–brain barrier organoid arrays

2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Claire Simonneau ◽  
Martina Duschmalé ◽  
Alina Gavrilov ◽  
Nathalie Brandenberg ◽  
Sylke Hoehnel ◽  
...  

Abstract Background The pathways that control protein transport across the blood–brain barrier (BBB) remain poorly characterized. Despite great advances in recapitulating the human BBB in vitro, current models are not suitable for systematic analysis of the molecular mechanisms of antibody transport. The gaps in our mechanistic understanding of antibody transcytosis hinder new therapeutic delivery strategy development. Methods We applied a novel bioengineering approach to generate human BBB organoids by the self-assembly of astrocytes, pericytes and brain endothelial cells with unprecedented throughput and reproducibility using micro patterned hydrogels. We designed a semi-automated and scalable imaging assay to measure receptor-mediated transcytosis of antibodies. Finally, we developed a workflow to use CRISPR/Cas9 gene editing in BBB organoid arrays to knock out regulators of endocytosis specifically in brain endothelial cells in order to dissect the molecular mechanisms of receptor-mediated transcytosis. Results BBB organoid arrays allowed the simultaneous growth of more than 3000 homogenous organoids per individual experiment in a highly reproducible manner. BBB organoid arrays showed low permeability to macromolecules and prevented transport of human non-targeting antibodies. In contrast, a monovalent antibody targeting the human transferrin receptor underwent dose- and time-dependent transcytosis in organoids. Using CRISPR/Cas9 gene editing in BBB organoid arrays, we showed that clathrin, but not caveolin, is required for transferrin receptor-dependent transcytosis. Conclusions Human BBB organoid arrays are a robust high-throughput platform that can be used to discover new mechanisms of receptor-mediated antibody transcytosis. The implementation of this platform during early stages of drug discovery can accelerate the development of new brain delivery technologies.

2021 ◽  
Author(s):  
Claire Simonneau ◽  
Martina Duschmalé ◽  
Alina Gavrilov ◽  
Nathalie Brandenberg ◽  
Sylke Hoehnel ◽  
...  

AbstractBackgroundThe pathways that control protein transport across the Blood-Brain Barrier (BBB) remain poorly characterized. Despite great advances in recapitulating the human BBB in vitro, current models are not suitable for systematic analysis of the molecular mechanisms of antibody transport. The gaps in our mechanistic understanding of antibody transcytosis hinder new therapeutic delivery strategy development.MethodsWe applied a novel bioengineering approach to generate human BBB organoids by the self-assembly of astrocytes, pericytes and brain endothelial cells with unprecedented throughput and reproducibility using micro patterned hydrogels. We designed a semi-automated and scalable imaging assay to measure receptor-mediated transcytosis of antibodies. Finally, we developed a workflow to use CRISPR/Cas9 gene editing in BBB organoid arrays to knock out regulators of endocytosis specifically in brain endothelial cells in order to dissect the molecular mechanisms of receptor-mediated transcytosis.ResultsBBB organoid arrays allowed the simultaneous growth of more than 5000 homogenous organoids per individual experiment in a highly reproducible manner. BBB organoid arrays showed low permeability to macromolecules and prevented transport of human non-targeting antibodies. In contrast, a monovalent antibody targeting the human transferrin receptor underwent dose- and time-dependent transcytosis in organoids. Using CRISPR/Cas9 gene editing in BBB organoid arrays, we showed that clathrin, but not caveolin, is required for transferrin receptor-dependent transcytosis.ConclusionsHuman BBB organoid arrays are a robust high-throughput platform that can be used to discover new mechanisms of receptor-mediated antibody transcytosis. The implementation of this platform during early stages of drug discovery can accelerate the development of new brain delivery technologies.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Marlyn D. Laksitorini ◽  
Vinith Yathindranath ◽  
Wei Xiong ◽  
Sabine Hombach-Klonisch ◽  
Donald W. Miller

AbstractWnt/β-catenin signaling is important for blood-brain barrier (BBB) development and is implicated in BBB breakdown under various pathophysiological conditions. In the present study, a comprehensive characterization of the relevant genes, transport and permeability processes influenced by both the autocrine and external activation of Wnt signaling in human brain endothelial cells was examined using hCMEC/D3 culture model. The hCMEC/D3 expressed a full complement of Wnt ligands and receptors. Preventing Wnt ligand release from hCMEC/D3 produced minimal changes in brain endothelial function, while inhibition of intrinsic/autocrine Wnt/β-catenin activity through blocking β-catenin binding to Wnt transcription factor caused more modest changes. In contrast, activation of Wnt signaling using exogenous Wnt ligand (Wnt3a) or LiCl (GSK3 inhibitor) improved the BBB phenotypes of the hCMEC/D3 culture model, resulting in reduced paracellular permeability, and increased P-glycoprotein (P-gp) and breast cancer resistance associated protein (BCRP) efflux transporter activity. Further, Wnt3a reduced plasmalemma vesicle associated protein (PLVAP) and vesicular transport activity in hCMEC/D3. Our data suggest that this in vitro model of the BBB has a more robust response to exogenous activation of Wnt/β-catenin signaling compared to autocrine activation, suggesting that BBB regulation may be more dependent on external activation of Wnt signaling within the brain microvasculature.


PLoS ONE ◽  
2013 ◽  
Vol 8 (8) ◽  
pp. e70233 ◽  
Author(s):  
Roberta Paolinelli ◽  
Monica Corada ◽  
Luca Ferrarini ◽  
Kavi Devraj ◽  
Cédric Artus ◽  
...  

2015 ◽  
Vol 36 (2) ◽  
pp. 340-362 ◽  
Author(s):  
Thomas Worzfeld ◽  
Markus Schwaninger

Normal brain homeostasis depends on the integrity of the blood–brain barrier that controls the access of nutrients, humoral factors, and immune cells to the CNS. The blood–brain barrier is composed mainly of brain endothelial cells. Forming the interface between two compartments, they are highly polarized. Apical/luminal and basolateral/abluminal membranes differ in their lipid and (glyco-)protein composition, allowing brain endothelial cells to secrete or transport soluble factors in a polarized manner and to maintain blood flow. Here, we summarize the basic concepts of apicobasal cell polarity in brain endothelial cells. To address potential molecular mechanisms underlying apicobasal polarity in brain endothelial cells, we draw on investigations in epithelial cells and discuss how polarity may go awry in neurological diseases.


PLoS ONE ◽  
2012 ◽  
Vol 7 (5) ◽  
pp. e38149 ◽  
Author(s):  
Eduard Urich ◽  
Stanley E. Lazic ◽  
Juliette Molnos ◽  
Isabelle Wells ◽  
Per-Ola Freskgård

2018 ◽  
Vol 315 (4) ◽  
pp. E531-E542 ◽  
Author(s):  
Maria Hersom ◽  
Hans C. Helms ◽  
Christoffer Schmalz ◽  
Thomas Å. Pedersen ◽  
Stephen T. Buckley ◽  
...  

Insulin and its receptor are known to be present and functional in the brain. Insulin cerebrospinal fluid concentrations have been shown to correlate with plasma levels of insulin in a nonlinear fashion, indicative of a saturable transport pathway from the blood to the brain interstitial fluid. The aim of the present study was to investigate whether insulin was transported across brain endothelial cells in vitro via an insulin receptor-dependent pathway. The study showed that the insulin receptor was expressed at both the mRNA and protein levels in bovine brain endothelial cells. Luminally applied radiolabeled insulin showed insulin receptor-mediated binding to the endothelial cells. This caused a dose-dependent increase in Akt-phosphorylation, which was inhibited by coapplication of an insulin receptor inhibitor, s961, demonstrating activation of insulin receptor signaling pathways. Transport of insulin across the blood-brain barrier in vitro was low and comparable to that of a similarly sized paracellular marker. Furthermore, insulin transport was not inhibited by coapplication of an excess of unlabeled insulin or an insulin receptor inhibitor. The insulin transport and uptake studies were repeated in mouse brain endothelial cells demonstrating similar results. Although it cannot be ruled out that culture-induced changes in the cell model could have impaired a potential insulin transport mechanism, these in vitro data indicate that peripheral insulin must reach the brain parenchyma through alternative pathways rather than crossing the blood-brain barrier via receptor mediated transcytosis.


Sign in / Sign up

Export Citation Format

Share Document