scholarly journals Exposures to 2,4-Dichlorophenoxyacetic acid with or without endotoxin upregulate small cell lung cancer pathway

Author(s):  
Geetika Kaur ◽  
B. V. Sunil Kumar ◽  
Baljit Singh ◽  
R. S. Sethi

Abstract Background Pesticide residues in food and environment along with airborne contaminants such as endotoxins pose health risk. Although herbicide 2,4-Dichlorophenoxyacetic acid (2,4-D) has been associated with increased risk of lung cancers such as small cell lung cancer (SCLC) among agricultural workers, there are no data on the SCLC signaling pathway upon 2,4-D exposure without LPS or in combination with endotoxin. Methods We exposed Swiss albino mice (N = 48) orally to high (9.58 mg kg− 1) and low (5.12 mg kg− 1) dosages of 2,4-D dissolved in corn oil for 90 days followed by E. coli lipopolysaccharide (LPS) or normal saline solution (80 μl/animal). Lung samples and broncho-alveolar fluid (BALF) were subjected to Total histological score (THS) and total leucocyte count (TLC) and differential leucocytes count (DLC) analyses, respectively. We used microarray and bioinformatics tools for transcriptomic analyses and differentially expressed genes were analyzed to predict the top canonical pathways followed by validation of selected genes by qRT-PCR and immunohistochemistry. Results Total histological score (THS) along with BALF analyses showed lung inflammation following long term dietary exposure to high or low doses of 2,4-D individually or in combination with LPS. Microarray analysis revealed exposure to high dose of 2,4-D without or with LPS upregulated 2178 and 2142 and downregulated 1965 and 1719 genes, respectively (p < 0.05; minimum cut off 1.5 log fold change). The low dose without or with LPS upregulated 2133 and 2054 and downregulated 1838 and 1625 genes, respectively. Bioinformatics analysis showed SCLC as topmost dysregulated pathway along with differential expression of Itgb1, NF-κB1, p53, Cdk6 and Apaf1. Immunohistological and quantitative real time PCR (qRT-PCR) analyses also supported the transcriptomic data. Conclusions Taken together, the data show exposures to high and low dose of 2,4-D with/without LPS induced lung inflammation and altered pulmonary transcriptome profile with the involvement of the SCLC pathway. The data from the study provide the insights of the potential damage on lungs caused by 2,4-D and help to better understand the mechanism of this complex relation.

2020 ◽  
Author(s):  
Geetika Kaur ◽  
BV Sunil Kumar ◽  
Baljit Singh ◽  
RS Sethi

Abstract Background: Pesticide residues in food and environment along with airborne contaminants such as endotoxins pose health risk. Although herbicide 2,4-Dichlorophenoxyacetic acid (2,4-D) has been associated with increased risk of lung cancers such as small cell lung cancer (SCLC) among agricultural workers, there are no data on the SCLC signaling pathway upon 2,4-D exposure alone or in combination with endotoxin. Methods: We exposed Swiss albino mice (N=48) orally to high (9.58 mg kg -1 ) and low (5.12 mg kg -1 ) dosages of 2,4-D dissolved in corn oil for 90 days followed by E. coli lipopolysaccharide (LPS) or normal saline solution (80µl/animal. Lung samples and broncho-alveolar fluid (BALF) were subjected to Total histological score (THS) and TLC and DLC analyses, respectively. We used microarray and bioinformatics tools for transcriptomic analyses and differentially expressed genes were analyzed to predict the top canonical pathways followed by validation of selected genes qPCR and immunohistochemistry. Results: Total histological score (THS) along with broncho-alveolar fluid (BALF) analyses showed lung inflammation following long term dietary exposure to high or low doses of 2,4-D individually or in combination with LPS. Microarray analysis revealed exposure to high dose of 2,4-D alone or with endotoxin upregulated 2178 and 2142 and downregulated 1965 and 1719 genes, respectively (p<0.05; minimum cut off 1.5 log fold change). The low dose alone or with LPS upregulated 2133 and 2054 and downregulated 1838 and 1625 genes, respectively. Bioinformatics analysis showed SCLC as topmost dysregulated pathway along with differential expression of Itgb1, NF-kB1, p53, Cdk6 and Apaf1. Immunohistological and qPCR analyses also supported the transcriptomic data. Conclusions: Taken together, the data show exposures to high and low dose of 2,4-D with/without LPS induced lung inflammation and altered pulmonary transcriptome profile with the involvement of the SCLC pathway. The data from the study provides the insights of the potential damage on lungs caused by 2,4-D and endotoxin interaction and helps to better understand the mechanism of this complex relation.


2021 ◽  
Author(s):  
Geetika Kaur ◽  
BV Sunil Kumar ◽  
Baljit Singh ◽  
RS Sethi

Abstract Background: Pesticide residues in food and environment along with airborne contaminants such as endotoxins pose health risk. Although herbicide 2,4-Dichlorophenoxyacetic acid (2,4-D) has been associated with increased risk of lung cancers such as small cell lung cancer (SCLC) among agricultural workers, there are no data on the SCLC signaling pathway upon 2,4-D exposure alone or in combination with endotoxin. Methods: We exposed Swiss albino mice (N=48) orally to high (9.58 mg kg-1) and low (5.12 mg kg-1) dosages of 2,4-D dissolved in corn oil for 90 days followed by E. coli lipopolysaccharide (LPS) or normal saline solution (80µl/animal. Lung samples and broncho-alveolar fluid (BALF) were subjected to Total histological score (THS) and total leucocyte count (TLC) and differential leucocytes count (DLC) analyses, respectively. We used microarray and bioinformatics tools for transcriptomic analyses and differentially expressed genes were analyzed to predict the top canonical pathways followed by validation of selected genes qPCR and immunohistochemistry. Results: Total histological score (THS) along with BALF analyses showed lung inflammation following long term dietary exposure to high or low doses of 2,4-D individually or in combination with LPS. Microarray analysis revealed exposure to high dose of 2,4-D alone or with endotoxin upregulated 2178 and 2142 and downregulated 1965 and 1719 genes, respectively (p<0.05; minimum cut off 1.5 log fold change). The low dose alone or with LPS upregulated 2133 and 2054 and downregulated 1838 and 1625 genes, respectively. Bioinformatics analysis showed SCLC as topmost dysregulated pathway along with differential expression of Itgb1, NF-kB1, p53, Cdk6 and Apaf1. Immunohistological and quantitative real time PCR (qRT-PCR) analyses also supported the transcriptomic data. Conclusions: Taken together, the data show exposures to high and low dose of 2,4-D with/without LPS induced lung inflammation and altered pulmonary transcriptome profile with the involvement of the SCLC pathway. The data from the study provides the insights of the potential damage on lungs caused by 2,4-D and endotoxin interaction and helps to better understand the mechanism of this complex relation.


2020 ◽  
Vol 20 (17) ◽  
pp. 2074-2081
Author(s):  
Onur Tokgun ◽  
Pervin E. Tokgun ◽  
Kubilay Inci ◽  
Hakan Akca

Background: Small Cell Lung Cancer (SCLC) is a highly aggressive malignancy. MYC family oncogenes are amplified and overexpressed in 20% of SCLCs, showing that MYC oncogenes and MYC regulated genes are strong candidates as therapeutic targets for SCLC. c-MYC plays a fundamental role in cancer stem cell properties and malignant transformation. Several targets have been identified by the activation/repression of MYC. Deregulated expression levels of lncRNAs have also been observed in many cancers. Objective: The aim of the present study is to investigate the lncRNA profiles which depend on MYC expression levels in SCLC. Methods: Firstly, we constructed lentiviral vectors for MYC overexpression/inhibition. MYC expression is suppressed by lentiviral shRNA vector in MYC amplified H82 and N417 cells, and overexpressed by lentiviral inducible overexpression vector in MYC non-amplified H345 cells. LncRNA cDNA is transcribed from total RNA samples, and 91 lncRNAs are evaluated by qRT-PCR. Results: We observed that N417, H82 and H345 cells require MYC for their growth. Besides, MYC is not only found to regulate the expressions of genes related to invasion, stem cell properties, apoptosis and cell cycle (p21, Bcl2, cyclinD1, Sox2, Aldh1a1, and N-Cadherin), but also found to regulate lncRNAs. With this respect, expressions of AK23948, ANRIL, E2F4AS, GAS5, MEG3, H19, L1PA16, SFMBT2, ZEB2NAT, HOTAIR, Sox2OT, PVT1, and BC200 were observed to be in parallel with MYC expression, whereas expressions of Malat1, PTENP1, Neat1, UCA1, SNHG3, and SNHG6 were inversely correlated. Conclusion: Targeting MYC-regulated genes as a therapeutic strategy can be important for SCLC therapy. This study indicated the importance of identifying MYC-regulated lncRNAs and that these can be utilized to develop a therapeutic strategy for SCLC.


JAMA Oncology ◽  
2020 ◽  
Vol 6 (7) ◽  
pp. e201250 ◽  
Author(s):  
Shingo Miyamoto ◽  
Koichi Azuma ◽  
Hidenobu Ishii ◽  
Akihiro Bessho ◽  
Shinobu Hosokawa ◽  
...  

2021 ◽  
Author(s):  
Fei Yang ◽  
Feng Jing ◽  
Yang Li ◽  
Shanshan Kong ◽  
Shimin Zhang ◽  
...  

Abstract Background: Lambert-Eaton myasthenic syndrome (LEMS) is a rare neuromuscular junction disorder associated with muscle weakness and small-cell lung cancer. Here, we used microarray analysis to identify long non-coding RNAs (lncRNAs) and messenger RNAs (mRNAs) that might serve as biomarkers for LEMS.Methods: Plasma lncRNA and mRNA expression profiles of three patients with paraneoplastic LEMS and three healthy controls were analyzed using Arraystar Human lncRNA Microarray v4.0. Differentially expressed lncRNAs and adjacent mRNAs were analyzed jointly, and candidates were verified in individual samples by quantitative real-time polymerase chain reaction (qRT-PCR). The identified lncRNAs and mRNAs were evaluated in nine patients with paraneoplastic LEMS, eight patients with non-tumor LEMS, and four patients with small cell lung cancer (SCLC). Results: A total of 320 lncRNAs were differentially expressed in patients with paraneoplastic LEMS compared to healthy controls (fold change >1.5, P < 0.05), and nine were further evaluated. One of the identified lncRNAS, LOC338963 (NR_031439), is known to regulated the expression of the mRNA AP3B2, and both were upregulated more than 2-fold in patients with paraneoplastic LEMS compared to healthy controls. Furthermore, qRT-PCR analysis revealed significant upregulation of LOC338963 (NR_031439) and AP3B2 expression in patients with paraneoplastic LEMS compared to those with either non-tumor LEMS (2.37- and 5.06-fold, respectively) or SCLC (4.36- and 14.97-fold, respectively).Conclusions: Plasma LOC338963 (NR_031439) and AP3B2 were found to be upregulated in LEMS and might be used as diagnostic biomarkers for this disease.


Sign in / Sign up

Export Citation Format

Share Document