scholarly journals Automatic freezing-tolerant rapeseed material recognition using UAV images and deep learning

Plant Methods ◽  
2022 ◽  
Vol 18 (1) ◽  
Author(s):  
Lili Li ◽  
Jiangwei Qiao ◽  
Jian Yao ◽  
Jie Li ◽  
Li Li

Abstract Background Freezing injury is a devastating yet common damage that occurs to winter rapeseed during the overwintering period which directly reduces the yield and causes heavy economic loss. Thus, it is an important and urgent task for crop breeders to find the freezing-tolerant rapeseed materials in the process of breeding. Existing large-scale freezing-tolerant rapeseed material recognition methods mainly rely on the field investigation conducted by the agricultural experts using some professional equipments. These methods are time-consuming, inefficient and laborious. In addition, the accuracy of these traditional methods depends heavily on the knowledge and experience of the experts. Methods To solve these problems of existing methods, we propose a low-cost freezing-tolerant rapeseed material recognition approach using deep learning and unmanned aerial vehicle (UAV) images captured by a consumer UAV. We formulate the problem of freezing-tolerant material recognition as a binary classification problem, which can be solved well using deep learning. The proposed method can automatically and efficiently recognize the freezing-tolerant rapeseed materials from a large number of crop candidates. To train the deep learning network, we first manually construct the real dataset using the UAV images of rapeseed materials captured by the DJI Phantom 4 Pro V2.0. Then, five classic deep learning networks (AlexNet, VGGNet16, ResNet18, ResNet50 and GoogLeNet) are selected to perform the freezing-tolerant rapeseed material recognition. Result and conclusion The accuracy of the five deep learning networks used in our work is all over 92%. Especially, ResNet50 provides the best accuracy (93.33$$\%$$ % ) in this task. In addition, we also compare deep learning networks with traditional machine learning methods. The comparison results show that the deep learning-based methods significantly outperform the traditional machine learning-based methods in our task. The experimental results show that it is feasible to recognize the freezing-tolerant rapeseed using UAV images and deep learning.

2021 ◽  
Author(s):  
Lili Li ◽  
Jiangwei Qiao ◽  
Jian Yao ◽  
Jie Li ◽  
Li Li

Abstract Background: Freezing injury is a serious and common damage that occurs to winter rapeseed during the overwintering period. The freezing injury directly reduces the rapeseed yield and causes serious economic loss. Thus, it is an important and urgent task for crop breeders to find the freezing-tolerant rapeseed materials in the process of breeding. Existing large-scale freezing-tolerant rapeseed material recognition methods mainly rely on the field investigation conducted by the agricultural experts using some professional equipment. These methods are time-consuming, inefficient and laborious. In addition, the accuracy of these traditional methods depends heavily on the knowledge and experience of experts. Methods: To solve these problems of existing methods, we propose a low-cost freezing-tolerant rapeseed material recognition approach using deep learning technology and unmanned aerial vehicle (UAV) images captured by a consumer drone. We formulate the problem of freezing-tolerant material recognition as a binary classification problem, which can be solved well using deep learning technology. The proposed method can automatically and efficiently recognize the freezing-tolerant rapeseed materials from a large number of candidates. To train the deep learning network, we first manually construct the real dataset using the UAV images of rapeseed materials collected by the Phantom 4 Pro. Then, five classic deep learning networks (AlexNet, VGGNet16, ResNet18, ResNet50 and GoogLeNet) are selected to perform the freezing-tolerant rapeseed material recognition. Result and Conclusion: The accuracy of the five deep learning networks used in our work is all over 92%. Especially, ResNet50 provides the best accuracy (93.33%) in this task. In addition, we also compare deep learning networks with traditional machine learning methods. The comparison results show that the deep learning-based approach significantly outperforms the traditional machine learning-based methods in our task. The experimental results show that it is feasible to recognize the freezing-tolerant rapeseed using UAV images and deep learning.


2021 ◽  
Author(s):  
Benjamin Kellenberger ◽  
Thor Veen ◽  
Eelke Folmer ◽  
Devis Tuia

<p>Recently, Unmanned Aerial Vehicles (UAVs) equipped with high-resolution imaging sensors have become a viable alternative for ecologists to conduct wildlife censuses, compared to foot surveys. They cause less disturbance by sensing remotely, they provide coverage of otherwise inaccessible areas, and their images can be reviewed and double-checked in controlled screening sessions. However, the amount of data they generate often makes this photo-interpretation stage prohibitively time-consuming.</p><p>In this work, we automate the detection process with deep learning [4]. We focus on counting coastal seabirds on sand islands off the West African coast, where species like the African Royal Tern are at the top of the food chain [5]. Monitoring their abundance provides invaluable insights into biodiversity in this area [7]. In a first step, we obtained orthomosaics from nadir-looking UAVs over six sand islands with 1cm resolution. We then fully labelled one of them with points for four seabird species, which required three weeks for five annotators to do and resulted in over 21,000 individuals. Next, we further labelled the other five orthomosaics, but in an incomplete manner; we aimed for a low number of only 200 points per species. These points, together with a few background polygons, served as training data for our ResNet-based [2] detection model. This low number of points required multiple strategies to obtain stable predictions, including curriculum learning [1] and post-processing by a Markov random field [6]. In the end, our model was able to accurately predict the 21,000 birds of the test image with 90% precision at 90% recall (Fig. 1) [3]. Furthermore, this model required a mere 4.5 hours from creating training data to the final prediction, which is a fraction of the three weeks needed for the manual labelling process. Inference time is only a few minutes, which makes the model scale favourably to many more islands. In sum, the combination of UAVs and machine learning-based detectors simultaneously provides census possibilities with unprecedentedly high accuracy and comparably minuscule execution time.</p><p><img src="https://contentmanager.copernicus.org/fileStorageProxy.php?f=gnp.bc5211f4f60067568601161/sdaolpUECMynit/12UGE&app=m&a=0&c=eeda7238e992b9591c2fec19197f67dc&ct=x&pn=gnp.elif&d=1" alt=""></p><p><em>Fig. 1: Our model is able to predict over 21,000 birds in high-resolution UAV images in a fraction of time compared to weeks of manual labelling.</em></p><p> </p><p>References</p><p>1. Bengio, Yoshua, et al. "Curriculum learning." Proceedings of the 26th annual international conference on machine learning. 2009.</p><p>2. He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.</p><p>3. Kellenberger, Benjamin, et al. “21,000 Birds in 4.5 Hours: Efficient Large-scale Seabird Detection with Machine Learning.” Remote Sensing in Ecology and Conservation. Under review.</p><p>4. LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. "Deep learning." nature 521.7553 (2015): 436-444.</p><p>5. Parsons, Matt, et al. "Seabirds as indicators of the marine environment." ICES Journal of Marine Science 65.8 (2008): 1520-1526.</p><p>6. Tuia, Devis, Michele Volpi, and Gabriele Moser. "Decision fusion with multiple spatial supports by conditional random fields." IEEE Transactions on Geoscience and Remote Sensing 56.6 (2018): 3277-3289.</p><p>7. Veen, Jan, Hanneke Dallmeijer, and Thor Veen. "Selecting piscivorous bird species for monitoring environmental change in the Banc d'Arguin, Mauritania." Ardea 106.1 (2018): 5-18.</p>


Diagnostics ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 528
Author(s):  
Said Boumaraf ◽  
Xiabi Liu ◽  
Yuchai Wan ◽  
Zhongshu Zheng ◽  
Chokri Ferkous ◽  
...  

Breast cancer is a serious threat to women. Many machine learning-based computer-aided diagnosis (CAD) methods have been proposed for the early diagnosis of breast cancer based on histopathological images. Even though many such classification methods achieved high accuracy, many of them lack the explanation of the classification process. In this paper, we compare the performance of conventional machine learning (CML) against deep learning (DL)-based methods. We also provide a visual interpretation for the task of classifying breast cancer in histopathological images. For CML-based methods, we extract a set of handcrafted features using three feature extractors and fuse them to get image representation that would act as an input to train five classical classifiers. For DL-based methods, we adopt the transfer learning approach to the well-known VGG-19 deep learning architecture, where its pre-trained version on the large scale ImageNet, is block-wise fine-tuned on histopathological images. The evaluation of the proposed methods is carried out on the publicly available BreaKHis dataset for the magnification dependent classification of benign and malignant breast cancer and their eight sub-classes, and a further validation on KIMIA Path960, a magnification-free histopathological dataset with 20 image classes, is also performed. After providing the classification results of CML and DL methods, and to better explain the difference in the classification performance, we visualize the learned features. For the DL-based method, we intuitively visualize the areas of interest of the best fine-tuned deep neural networks using attention maps to explain the decision-making process and improve the clinical interpretability of the proposed models. The visual explanation can inherently improve the pathologist’s trust in automated DL methods as a credible and trustworthy support tool for breast cancer diagnosis. The achieved results show that DL methods outperform CML approaches where we reached an accuracy between 94.05% and 98.13% for the binary classification and between 76.77% and 88.95% for the eight-class classification, while for DL approaches, the accuracies range from 85.65% to 89.32% for the binary classification and from 63.55% to 69.69% for the eight-class classification.


Electronics ◽  
2021 ◽  
Vol 10 (13) ◽  
pp. 1550
Author(s):  
Alexandros Liapis ◽  
Evanthia Faliagka ◽  
Christos P. Antonopoulos ◽  
Georgios Keramidas ◽  
Nikolaos Voros

Physiological measurements have been widely used by researchers and practitioners in order to address the stress detection challenge. So far, various datasets for stress detection have been recorded and are available to the research community for testing and benchmarking. The majority of the stress-related available datasets have been recorded while users were exposed to intense stressors, such as songs, movie clips, major hardware/software failures, image datasets, and gaming scenarios. However, it remains an open research question if such datasets can be used for creating models that will effectively detect stress in different contexts. This paper investigates the performance of the publicly available physiological dataset named WESAD (wearable stress and affect detection) in the context of user experience (UX) evaluation. More specifically, electrodermal activity (EDA) and skin temperature (ST) signals from WESAD were used in order to train three traditional machine learning classifiers and a simple feed forward deep learning artificial neural network combining continues variables and entity embeddings. Regarding the binary classification problem (stress vs. no stress), high accuracy (up to 97.4%), for both training approaches (deep-learning, machine learning), was achieved. Regarding the stress detection effectiveness of the created models in another context, such as user experience (UX) evaluation, the results were quite impressive. More specifically, the deep-learning model achieved a rather high agreement when a user-annotated dataset was used for validation.


2018 ◽  
Vol 8 (4) ◽  
pp. 34 ◽  
Author(s):  
Vishal Saxena ◽  
Xinyu Wu ◽  
Ira Srivastava ◽  
Kehan Zhu

The ongoing revolution in Deep Learning is redefining the nature of computing that is driven by the increasing amount of pattern classification and cognitive tasks. Specialized digital hardware for deep learning still holds its predominance due to the flexibility offered by the software implementation and maturity of algorithms. However, it is being increasingly desired that cognitive computing occurs at the edge, i.e., on hand-held devices that are energy constrained, which is energy prohibitive when employing digital von Neumann architectures. Recent explorations in digital neuromorphic hardware have shown promise, but offer low neurosynaptic density needed for scaling to applications such as intelligent cognitive assistants (ICA). Large-scale integration of nanoscale emerging memory devices with Complementary Metal Oxide Semiconductor (CMOS) mixed-signal integrated circuits can herald a new generation of Neuromorphic computers that will transcend the von Neumann bottleneck for cognitive computing tasks. Such hybrid Neuromorphic System-on-a-chip (NeuSoC) architectures promise machine learning capability at chip-scale form factor, and several orders of magnitude improvement in energy efficiency. Practical demonstration of such architectures has been limited as performance of emerging memory devices falls short of the expected behavior from the idealized memristor-based analog synapses, or weights, and novel machine learning algorithms are needed to take advantage of the device behavior. In this article, we review the challenges involved and present a pathway to realize large-scale mixed-signal NeuSoCs, from device arrays and circuits to spike-based deep learning algorithms with ‘brain-like’ energy-efficiency.


2019 ◽  
Author(s):  
Mojtaba Haghighatlari ◽  
Gaurav Vishwakarma ◽  
Mohammad Atif Faiz Afzal ◽  
Johannes Hachmann

<div><div><div><p>We present a multitask, physics-infused deep learning model to accurately and efficiently predict refractive indices (RIs) of organic molecules, and we apply it to a library of 1.5 million compounds. We show that it outperforms earlier machine learning models by a significant margin, and that incorporating known physics into data-derived models provides valuable guardrails. Using a transfer learning approach, we augment the model to reproduce results consistent with higher-level computational chemistry training data, but with a considerably reduced number of corresponding calculations. Prediction errors of machine learning models are typically smallest for commonly observed target property values, consistent with the distribution of the training data. However, since our goal is to identify candidates with unusually large RI values, we propose a strategy to boost the performance of our model in the remoter areas of the RI distribution: We bias the model with respect to the under-represented classes of molecules that have values in the high-RI regime. By adopting a metric popular in web search engines, we evaluate our effectiveness in ranking top candidates. We confirm that the models developed in this study can reliably predict the RIs of the top 1,000 compounds, and are thus able to capture their ranking. We believe that this is the first study to develop a data-derived model that ensures the reliability of RI predictions by model augmentation in the extrapolation region on such a large scale. These results underscore the tremendous potential of machine learning in facilitating molecular (hyper)screening approaches on a massive scale and in accelerating the discovery of new compounds and materials, such as organic molecules with high-RI for applications in opto-electronics.</p></div></div></div>


Author(s):  
Limu Chen ◽  
Ye Xia ◽  
Dexiong Pan ◽  
Chengbin Wang

<p>Deep-learning based navigational object detection is discussed with respect to active monitoring system for anti-collision between vessel and bridge. Motion based object detection method widely used in existing anti-collision monitoring systems is incompetent in dealing with complicated and changeable waterway for its limitations in accuracy, robustness and efficiency. The video surveillance system proposed contains six modules, including image acquisition, detection, tracking, prediction, risk evaluation and decision-making, and the detection module is discussed in detail. A vessel-exclusive dataset with tons of image samples is established for neural network training and a SSD (Single Shot MultiBox Detector) based object detection model with both universality and pertinence is generated attributing to tactics of sample filtering, data augmentation and large-scale optimization, which make it capable of stable and intelligent vessel detection. Comparison results with conventional methods indicate that the proposed deep-learning method shows remarkable advantages in robustness, accuracy, efficiency and intelligence. In-situ test is carried out at Songpu Bridge in Shanghai, and the results illustrate that the method is qualified for long-term monitoring and providing information support for further analysis and decision making.</p>


2020 ◽  
Vol 14 ◽  
Author(s):  
Yaqing Zhang ◽  
Jinling Chen ◽  
Jen Hong Tan ◽  
Yuxuan Chen ◽  
Yunyi Chen ◽  
...  

Emotion is the human brain reacting to objective things. In real life, human emotions are complex and changeable, so research into emotion recognition is of great significance in real life applications. Recently, many deep learning and machine learning methods have been widely applied in emotion recognition based on EEG signals. However, the traditional machine learning method has a major disadvantage in that the feature extraction process is usually cumbersome, which relies heavily on human experts. Then, end-to-end deep learning methods emerged as an effective method to address this disadvantage with the help of raw signal features and time-frequency spectrums. Here, we investigated the application of several deep learning models to the research field of EEG-based emotion recognition, including deep neural networks (DNN), convolutional neural networks (CNN), long short-term memory (LSTM), and a hybrid model of CNN and LSTM (CNN-LSTM). The experiments were carried on the well-known DEAP dataset. Experimental results show that the CNN and CNN-LSTM models had high classification performance in EEG-based emotion recognition, and their accurate extraction rate of RAW data reached 90.12 and 94.17%, respectively. The performance of the DNN model was not as accurate as other models, but the training speed was fast. The LSTM model was not as stable as the CNN and CNN-LSTM models. Moreover, with the same number of parameters, the training speed of the LSTM was much slower and it was difficult to achieve convergence. Additional parameter comparison experiments with other models, including epoch, learning rate, and dropout probability, were also conducted in the paper. Comparison results prove that the DNN model converged to optimal with fewer epochs and a higher learning rate. In contrast, the CNN model needed more epochs to learn. As for dropout probability, reducing the parameters by ~50% each time was appropriate.


The Analyst ◽  
2020 ◽  
Vol 145 (14) ◽  
pp. 4827-4835 ◽  
Author(s):  
Shizhuang Weng ◽  
Hecai Yuan ◽  
Xueyan Zhang ◽  
Pan Li ◽  
Ling Zheng ◽  
...  

Surface-enhanced Raman spectroscopy (SERS) based on machine learning methods has been applied in material analysis, biological detection, food safety, and intelligent analysis.


Sign in / Sign up

Export Citation Format

Share Document