scholarly journals TPEN attenuates amyloid-β25–35-induced neuronal damage with changes in the electrophysiological properties of voltage-gated sodium and potassium channels

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Wen-bo Chen ◽  
Yu-xiang Wang ◽  
Hong-gang Wang ◽  
Di An ◽  
Dan Sun ◽  
...  

AbstractTo understand the role of intracellular zinc ion (Zn2+) dysregulation in mediating age-related neurodegenerative changes, particularly neurotoxicity resulting from the generation of excessive neurotoxic amyloid-β (Aβ) peptides, this study aimed to investigate whether N, N, N′, N′-tetrakis (2-pyridylmethyl) ethylenediamine (TPEN), a Zn2+-specific chelator, could attenuate Aβ25–35-induced neurotoxicity and the underlying electrophysiological mechanism. We used the 3-(4, 5-dimethyl-thiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay to measure the viability of hippocampal neurons and performed single-cell confocal imaging to detect the concentration of Zn2+ in these neurons. Furthermore, we used the whole-cell patch-clamp technique to detect the evoked repetitive action potential (APs), the voltage-gated sodium and potassium (K+) channels of primary hippocampal neurons. The analysis showed that TPEN attenuated Aβ25–35-induced neuronal death, reversed the Aβ25–35-induced increase in intracellular Zn2+ concentration and the frequency of APs, inhibited the increase in the maximum current density of voltage-activated sodium channel currents induced by Aβ25–35, relieved the Aβ25–35-induced decrease in the peak amplitude of transient outward K+ currents (IA) and outward-delayed rectifier K+ currents (IDR) at different membrane potentials, and suppressed the steady-state activation and inactivation curves of IA shifted toward the hyperpolarization direction caused by Aβ25–35. These results suggest that Aβ25–35-induced neuronal damage correlated with Zn2+ dysregulation mediated the electrophysiological changes in the voltage-gated sodium and K+ channels. Moreover, Zn2+-specific chelator-TPEN attenuated Aβ25–35-induced neuronal damage by recovering the intracellular Zn2+ concentration.

1999 ◽  
Vol 81 (4) ◽  
pp. 1749-1759 ◽  
Author(s):  
Corinna Pelz ◽  
Johannes Jander ◽  
Hendrik Rosenboom ◽  
Martin Hammer ◽  
Randolf Menzel

I A in Kenyon cells of the mushroom body of honeybees resembles shaker currents: kinetics, modulation by K+, and simulation. Cultured Kenyon cells from the mushroom body of the honeybee, Apis mellifera, show a voltage-gated, fast transient K+ current that is sensitive to 4-aminopyridine, an A current. The kinetic properties of this A current and its modulation by extracellular K+ ions were investigated in vitro with the whole cell patch-clamp technique. The A current was isolated from other voltage-gated currents either pharmacologically or with suitable voltage-clamp protocols. Hodgkin- and Huxley-style mathematical equations were used for the description of this current and for the simulation of action potentials in a Kenyon cell model. Activation and inactivation of the A current are fast and voltage dependent with time constants of 0.4 ± 0.1 ms (means ± SE) at +45 mV and 3.0 ± 1.6 ms at +45 mV, respectively. The pronounced voltage dependence of the inactivation kinetics indicates that at least a part of this current of the honeybee Kenyon cells is a shaker-like current. Deactivation and recovery from inactivation also show voltage dependency. The time constant of deactivation has a value of 0.4 ± 0.1 ms at −75 mV. Recovery from inactivation needs a double-exponential function to be fitted adequately; the resulting time constants are 18 ± 3.1 ms for the fast and 745 ± 107 ms for the slow process at −75 mV. Half-maximal activation of the A current occurs at −0.7 ± 2.9 mV, and half-maximal inactivation occurs at −54.7 ± 2.4 mV. An increase in the extracellular K+concentration increases the conductance and accelerates the recovery from inactivation of the A current, affecting the slow but not the fast time constant. With respect to these modulations the current under investigation resembles some of the shaker-like currents. The data of the A current were incorporated into a reduced computational model of the voltage-gated currents of Kenyon cells. In addition, the model contained a delayed rectifier K+ current, a Na+current, and a leakage current. The model is able to generate an action potential on current injection. The model predicts that the A current causes repolarization of the action potential but not a delay in the initiation of the action potential. It further predicts that the activation of the delayed rectifier K+ current is too slow to contribute markedly to repolarization during a single action potential. Because of its fast activation, the A current reduces the amplitude of the net depolarizing current and thus reduces the peak amplitude and the duration of the action potential.


2018 ◽  
Vol 15 (7) ◽  
pp. 618-627 ◽  
Author(s):  
Hui Liu ◽  
Golam T. Saffi ◽  
Maryam S. Vasefi ◽  
Youngjik Choi ◽  
Jeff S. Kruk ◽  
...  

Background: PDGFβ receptors and their ligand, PDGF-BB, are upregulated in vivo after neuronal insults such as ischemia. When applied exogenously, PDGF-BB is neuroprotective against excitotoxicity and HIV proteins. Objective: Given this growth factor's neuroprotective ability, we sought to determine if PDGF-BB would be neuroprotective against amyloid-β (1-42), one of the pathological agents associated with Alzheimer's disease (AD). Methods and Results: In both primary hippocampal neurons and the human-derived neuroblastoma cell line, SH-SY5Y, amyloid-β treatment for 24 h decreased surviving cell number in a concentrationdependent manner. Pretreatment with PDGF-BB failed to provide any neuroprotection against amyloid-β in primary neurons and only very limited protective effects in SH-SY5Y cells. In addition to its neuroprotective action, PDGF promotes cell growth and division in several systems, and the application of PDGFBB alone to serum-starved SH-SY5Y cells resulted in an increase in cell number. Amyloid-β attenuated the mitogenic effects of PDGF-BB, inhibited PDGF-BB-induced PDGFβ receptor phosphorylation, and attenuated the ability of PDGF-BB to protect neurons against NMDA-induced excitotoxicity. Despite the ability of amyloid-β to inhibit PDGFβ receptor activation, immunoprecipitation experiments failed to detect a physical interaction between amyloid-β and PDGF-BB or the PDGFβ receptor. However, G protein-coupled receptor transactivation of the PDGFβ receptor (an exclusively intracellular signaling pathway) remained unaffected by the presence of amyloid-β. Conclusions: As the PDGF system is upregulated upon neuronal damage, the ability of amyloid-β to inhibit this endogenous neuroprotective system should be further investigated in the context of AD pathophysiology.


2015 ◽  
Vol 308 (8) ◽  
pp. C594-C605 ◽  
Author(s):  
Feng Guo ◽  
Pei-Dong Zhou ◽  
Qing-Hua Gao ◽  
Jian Gong ◽  
Rui Feng ◽  
...  

Culture of hippocampal neurons in low-Mg2+ medium (low-Mg2+ neurons) results in induction of continuous seizure activity. However, the underlying mechanism of the contribution of low Mg2+ to hyperexcitability of neurons has not been clarified. Our data, obtained using the patch-clamp technique, show that voltage-gated Na+ channel (VGSC) activity, which is associated with a persistent, noninactivating Na+ current ( INa,P), was modulated by calmodulin (CaM) in a concentration-dependent manner in normal and low-Mg2+ neurons, but the channel activity was more sensitive to Ca2+/CaM regulation in low-Mg2+ than normal neurons. The increased sensitivity of VGSCs in low-Mg2+ neurons was partially retained when CaM12 and CaM34, CaM mutants with disabled binding sites in the N or C lobe, were used but was diminished when CaM1234, a CaM mutant in which all four Ca2+ sites are disabled, was used, indicating that functional Ca2+-binding sites from either lobe of CaM are required for modulation of VGSCs in low-Mg2+ neurons. Furthermore, the number of neurons exhibiting colocalization of CaM with the VGSC subtypes NaV1.1, NaV1.2, and NaV1.3 was significantly higher in low- Mg2+ than normal neurons, as shown by immunofluorescence. Our main finding is that low-Mg2+ treatment increases sensitivity of VGSCs to Ca2+/CaM-mediated regulation. Our data reveal that CaM, as a core regulating factor, connects the functional roles of the three main intracellular ions, Na+, Ca2+, and Mg2+, by modulating VGSCs and provides a possible explanation for the seizure discharge observed in low-Mg2+ neurons.


2008 ◽  
Vol 294 (2) ◽  
pp. H1010-H1017 ◽  
Author(s):  
Kenneth B. Walsh ◽  
Jining Zhang

Cardiac fibroblasts regulate myocardial development via mechanical, chemical, and electrical interactions with associated cardiomyocytes. The goal of this study was to identify and characterize voltage-gated K+ (Kv) channels in neonatal rat ventricular fibroblasts. With the use of the whole cell arrangement of the patch-clamp technique, three types of voltage-gated, outward K+ currents were measured in the cultured fibroblasts. The majority of cells expressed a transient outward K+ current ( Ito) that activated at potentials positive to −40 mV and partially inactivated during depolarizing voltage steps. Ito was inhibited by the antiarrhythmic agent flecainide (100 μM) and BaCl2 (1 mM) but was unaffected by 4-aminopyridine (4-AP; 0.5 and 1 mM). A smaller number of cells expressed one of two types of kinetically distinct, delayed-rectifier K+ currents [ IK fast ( IKf) and IK slow ( IKs)] that were strongly blocked by 4-AP. Application of phorbol 12-myristate 13-acetate, to stimulate protein kinase C (PKC), inhibited Ito but had no effect on IKf and IKs. Immunoblot analysis revealed the presence of Kv1.4, Kv1.2, Kv1.5, and Kv2.1 α-subunits but not Kv4.2 or Kv1.6 α-subunits in the fibroblasts. Finally, pretreatment of the cells with 4-AP inhibited angiotensin II-induced intracellular Ca2+ mobilization. Thus neonatal cardiac fibroblasts express at least three different Kv channels that may contribute to electrical/chemical signaling in these cells.


1992 ◽  
Vol 263 (5) ◽  
pp. C986-C994 ◽  
Author(s):  
B. A. Biagi ◽  
B. Mlinar ◽  
J. J. Enyeart

The whole cell version of the patch-clamp technique was used to identify and characterize voltage-gated Ca2+, Na+, and K+ currents in the calcitonin-secreting human thyroid TT cell line. Ca2+ current consisted of a single low-voltage-activated rapidly inactivating component. The current was one-half maximally activated at a potential of -27 mV, while steady-state voltage-dependent inactivation was one-half complete at -51 mV. The Ca2+ current inactivated with a voltage-dependent time constant that reached a minimum of 16 ms at potentials positive to -15 mV. Deactivation kinetics could also be fit with a single voltage-dependent time constant of approximately 2 ms at -80 mV. Replacing Ca2+ with Ba2+ reduced the maximum current by 18 +/- 5% (n = 6). The dihydropyridine Ca2+ agonist (-)BAY K 8644 did not affect the Ca2+ current, but 50 microM Ni2+ reduced it by 81 +/- 0.8% (n = 5). TT cells also possessed tetrodotoxin-sensitive voltage-gated Na+ channels and tetraethylammonium-sensitive delayed rectifier type K+ currents. These results indicate that TT cells possess membrane currents necessary for the generation of action potentials. T-type Ca2+ channels are the sole pathway for voltage-dependent Ca2+ entry into these cells and may couple electrical activity to calcitonin secretion.


2020 ◽  
Vol 21 (4) ◽  
pp. 1549 ◽  
Author(s):  
Maria Calvo-Rodriguez ◽  
Elena Hernando-Pérez ◽  
Sara López-Vázquez ◽  
Javier Núñez ◽  
Carlos Villalobos ◽  
...  

Aging is often associated with a cognitive decline and a susceptibility to neuronal damage. It is also the most important risk factor for neurodegenerative disorders, particularly Alzheimer’s disease (AD). AD is related to an excess of neurotoxic oligomers of amyloid β peptide (Aβo); however, the molecular mechanisms are still highly controversial. Intracellular Ca2+ homeostasis plays an important role in the control of neuronal activity, including neurotransmitter release, synaptic plasticity, and memory storage, as well as neuron cell death. Recent evidence indicates that long-term cultures of rat hippocampal neurons, resembling aged neurons, undergo cell death after treatment with Aβo, whereas short-term cultures, resembling young neurons, do not. These in vitro changes are associated with the remodeling of intracellular Ca2+ homeostasis with aging, thus providing a simplistic model for investigating Ca2+ remodeling in aging. In vitro aged neurons show increased resting cytosolic Ca2+ concentration, enhanced Ca2+ store content, and Ca2+ release from the endoplasmic reticulum (ER). Ca2+ transfer from the endoplasmic reticulum (ER) to mitochondria is also enhanced. Aged neurons also show decreased store-operated Ca2+ entry (SOCE), a Ca2+ entry pathway related to memory storage. At the molecular level, in vitro remodeling is associated with changes in the expression of Ca2+ channels resembling in vivo aging, including changes in N-methyl-D-aspartate NMDA receptor and inositol 1,4,5-trisphosphate (IP3) receptor isoforms, increased expression of the mitochondrial calcium uniporter (MCU), and decreased expression of Orai1/Stim1, the molecular players involved in SOCE. Additionally, Aβo treatment exacerbates most of the changes observed in aged neurons and enhances susceptibility to cell death. Conversely, the solely effect of Aβo in young neurons is to increase ER–mitochondria colocalization and enhance Ca2+ transfer from ER to mitochondria without inducing neuronal damage. We propose that cultured rat hippocampal neurons may be a useful model to investigate Ca2+ remodeling in aging and in age-related neurodegenerative disorders.


2020 ◽  
Vol 21 (3) ◽  
pp. 952 ◽  
Author(s):  
Kenjiro Ono ◽  
Mayumi Tsuji

Worldwide, Alzheimer’s disease (AD) is the most common age-related neurodegenerative disease and is characterized by unique pathological hallmarks in the brain, including plaques composed of amyloid β-protein (Aβ) and neurofibrillary tangles of tau protein. Genetic studies, biochemical data, and animal models have suggested that Aβ is responsible for the pathogenesis of AD (i.e., the amyloid hypothesis). Indeed, Aβ molecules tend to aggregate, forming oligomers, protofibrils, and mature fibrils. However, while these Aβ species form amyloid plaques of the type implicated in AD neurodegeneration, recent clinical trials designed to reduce the production of Aβ and/or the plaque burden have not demonstrated clinical efficacy. In addition, recent studies using synthetic Aβ peptides, cell culture models, Arctic transgenic mice, and human samples of AD brain tissues have suggested that the pre-fibrillar forms of Aβ, particularly Aβ protofibrils, may be the most critical species, compared with extracellular fibrillar forms. We recently reported that protofibrils of Aβ1-42 disturbed membrane integrity by inducing reactive oxygen species generation and lipid peroxidation, resulting in decreased membrane fluidity, intracellular calcium dysregulation, depolarization, and synaptic toxicity. Therefore, the therapeutic reduction of protofibrils may prevent the progression of AD by ameliorating neuronal damage and cognitive dysfunction through multiple mechanisms.


2015 ◽  
Vol 26 (6) ◽  
pp. 1058-1071 ◽  
Author(s):  
Kathlyn J. Gan ◽  
Michael A. Silverman

Disruption of fast axonal transport (FAT) and intracellular Ca2+ dysregulation are early pathological events in Alzheimer's disease (AD). Amyloid-β oligomers (AβOs), a causative agent of AD, impair transport of BDNF independent of tau by nonexcitotoxic activation of calcineurin (CaN). Ca2+-dependent mechanisms that regulate the onset, severity, and spatiotemporal progression of BDNF transport defects from dendritic and axonal AβO binding sites are unknown. Here we show that BDNF transport defects in dendrites and axons are induced simultaneously but exhibit different rates of decline. The spatiotemporal progression of FAT impairment correlates with Ca2+ elevation and CaN activation first in dendrites and subsequently in axons. Although many axonal pathologies have been described in AD, studies have primarily focused only on the dendritic effects of AβOs despite compelling reports of presynaptic AβOs in AD models and patients. Indeed, we observe that dendritic CaN activation converges on Ca2+ influx through axonal voltage-gated Ca2+ channels to impair FAT. Finally, FAT defects are prevented by dantrolene, a clinical compound that reduces Ca2+ release from the ER. This work establishes a novel role for Ca2+ dysregulation in BDNF transport disruption and tau-independent Aβ toxicity in early AD.


2002 ◽  
Vol 88 (2) ◽  
pp. 965-972 ◽  
Author(s):  
P. Van Damme ◽  
L. Van den Bosch ◽  
E. Van Houtte ◽  
J. Eggermont ◽  
G. Callewaert ◽  
...  

α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor currents, evoked with the agonist kainate, were studied with the gramicidin perforated-patch-clamp technique in cultured rat spinal cord motoneurons. Kainate-induced currents could be blocked by the AMPA receptor antagonist LY 300164 and displayed an apparent strong inward rectification. This inward rectification was not a genuine property of AMPA receptor currents but was a result of a concomitant decrease in outward current at potentials positive to −40.5 ± 1.3 mV. The AMPA receptor current itself was nearly linear (rectification index 0.91). The kainate-inhibited outward current had a reversal potential close to the estimated K+equilibrium potential and was blocked by 30 mM tetraethylammonium. When voltage steps were applied, it was found that kainate inhibited both the delayed rectifier K+ current KV and the transient outward K+ current, KA. The kainate-induced inhibition of K+ currents was dependent on ion flux through the AMPA receptor, because no change in the membrane conductance was noticed in the presence of LY 300164. Removing extracellular Ca2+ had no effect, whereas replacing extracellular Na+ or clamping the membrane close to the estimated Na+equilibrium potential during kainate application attenuated the inhibition of the K+ current. Sustained Na+ influx induced by application of the Na+ ionophore monensin could mimic the effect of kainate on K+ conductance. These findings demonstrate that Na+ influx through AMPA receptors results in blockade of voltage-gated K+channels.


Sign in / Sign up

Export Citation Format

Share Document