scholarly journals Fibrinogen-like protein 1 (FGL1): the next immune checkpoint target

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Wenjing Qian ◽  
Mingfang Zhao ◽  
Ruoyu Wang ◽  
Heming Li

AbstractImmune checkpoint therapy has achieved significant efficacy by blocking inhibitory pathways to release the function of T lymphocytes. In the clinic, anti-programmed cell death protein 1/programmed cell death ligand 1 (PD-1/PD-L1) monoclonal antibodies (mAbs) have progressed to first-line monotherapies in certain tumor types. However, the efficacy of anti-PD-1/PD-L1 mAbs is still limited due to toxic side effects and de novo or adaptive resistance. Moreover, other immune checkpoint target and biomarkers for therapeutic response prediction are still lacking; as a biomarker, the PD-L1 (CD274, B7-H1) expression level is not as accurate as required. Hence, it is necessary to seek more representative predictive molecules and potential target molecules for immune checkpoint therapy. Fibrinogen-like protein 1 (FGL1) is a proliferation- and metabolism-related protein secreted by the liver. Multiple studies have confirmed that FGL1 is a newly emerging checkpoint ligand of lymphocyte activation gene 3 (LAG3), emphasizing the potential of targeting FGL1/LAG3 as the next generation of immune checkpoint therapy. In this review, we summarize the substantial regulation mechanisms of FGL1 in physiological and pathological conditions, especially tumor epithelial to mesenchymal transition, immune escape and immune checkpoint blockade resistance, to provide insights for targeting FGL1 in cancer treatment.

2020 ◽  
Vol 8 (2) ◽  
pp. e001501
Author(s):  
Esmee P Hoefsmit ◽  
Elisa A Rozeman ◽  
Trieu My Van ◽  
Petros Dimitriadis ◽  
Oscar Krijgsman ◽  
...  

BackgroundThe profound disparity in response to immune checkpoint blockade (ICB) by cutaneous melanoma (CM) and uveal melanoma (UM) patients is not well understood. Therefore, we characterized metastases of CM and UM from the same metastatic site (liver), in order to dissect the potential underlying mechanism in differential response on ICB.MethodsTumor liver samples from CM (n=38) and UM (n=28) patients were analyzed at the genomic (whole exome sequencing), transcriptional (RNA sequencing) and protein (immunohistochemistry and GeoMx Digital Spatial Profiling) level.ResultsComparison of CM and UM metastases from the same metastatic site revealed that, although originating from the same melanocyte lineage, CM and UM differed in somatic mutation profile, copy number profile, tumor mutational burden (TMB) and consequently predicted neoantigens. A higher melanin content and higher expression of the melanoma differentiation antigen MelanA was observed in liver metastases of UM patients. No difference in B2M and human leukocyte antigen-DR (HLA-DR) expression was observed. A higher expression of programmed cell death ligand 1 (PD-L1) was found in CM compared with UM liver metastases, although the majority of CM and UM liver metastases lacked PD-L1 expression. There was no difference in the extent of immune infiltration observed between CM and UM metastases, with the exception of a higher expression of CD163 (p<0.0001) in CM liver samples. While the extent of immune infiltration was similar for CM and UM metastases, the ratio of exhausted CD8 T cells to cytotoxic T cells, to total CD8 T cells and to Th1 cells, was significantly higher in UM metastases.ConclusionsWhile TMB was different between CM and UM metastases, tumor immune infiltration was similar. The greater dependency on PD-L1 as an immune checkpoint in CM and the identification of higher exhaustion ratios in UM may both serve as explanations for the difference in response to ICB. Consequently, in order to improve current treatment for metastatic UM, reversal of T cell exhaustion beyond programmed cell death 1 blockade should be considered.


PLoS ONE ◽  
2013 ◽  
Vol 8 (2) ◽  
pp. e56280 ◽  
Author(s):  
Hasse Brønnum ◽  
Ditte C. Andersen ◽  
Mikael Schneider ◽  
Maria B. Sandberg ◽  
Tilde Eskildsen ◽  
...  

2020 ◽  
Vol 21 (15) ◽  
pp. 5456 ◽  
Author(s):  
Ayumi Kuzume ◽  
SungGi Chi ◽  
Nobuhiko Yamauchi ◽  
Yosuke Minami

Tumor cells use immune-checkpoint pathways to evade the host immune system and suppress immune cell function. These cells express programmed cell-death protein 1 ligand 1 (PD-L1)/PD-L2, which bind to the programmed cell-death protein 1 (PD-1) present on cytotoxic T cells, trigger inhibitory signaling, and reduce cytotoxicity and T-cell exhaustion. Immune-checkpoint blockade can inhibit this signal and may serve as an effective therapeutic strategy in patients with solid tumors. Several trials have been conducted on immune-checkpoint inhibitor therapy in patients with malignant lymphoma and their efficacy has been reported. For example, in Hodgkin lymphoma, immune-checkpoint blockade has resulted in response rates of 65% to 75%. However, in non-Hodgkin lymphoma, the response rate to immune-checkpoint blockade was lower. In this review, we evaluate the biology of immune-checkpoint inhibition and the current data on its efficacy in malignant lymphoma, and identify the cases in which the treatment was more effective.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A250-A250
Author(s):  
Anushka Dongre ◽  
Robert Weinberg ◽  
Mohammad Rashidian ◽  
Elinor Eaton ◽  
Ferenc Reinhardt ◽  
...  

BackgroundImmune checkpoint blockade (ICB) has generated some dramatic responses in certain types of human tumors, most notably, melanomas. However, the response of breast tumors has been largely limited. We have previously demonstrated that the residence of breast cancer cells in the epithelial or mesenchymal phenotypic states can itself be used as an important determinant of the success or failure of ICB. Specifically, we have shown that while epithelial tumors are sensitive to anti-CTLA4, mesenchymal tumors are highly resistant. Most strikingly, in tumors arising from a mixture of both cell types, a minority population (10%) of mesenchymal cells can cross-protect the vast majority (90%) of their epithelial neighbors from immune attack.1 However, the mechanisms underlying such cross-protection remain elusive. This is particularly important as most human breast cancers contain minority populations of such mesenchymal cells which can protect the tumor as a whole from immune attack.MethodsUsing a combination of transcriptomic and CRISPR/Cas9 approaches, we first identified that mesenchymal carcinoma cells express high levels of CD73, an ecto-enzyme that catalyzes the production of adenosine. Additionally, we used digital spatial profiling to determine whether CD73 expression differs across distinct epithelial and mesenchymal sectors in mixed tumors.ResultsAbrogation of CD73 from mesenchymal carcinoma cells prevented the assembly of an immunosuppressive tumor microenvironment and resulted instead in increased numbers of tumor-infiltrating lymphocytes and cross-presenting dendritic cells. Most strikingly, abrogation of CD73 sensitized previously refractory mesenchymal tumors completely to ICB. In the context of mixed tumors comprised of both epithelial and mesenchymal carcinoma cells, gradients in expression of CD73 were observed corresponding to the epithelial or mesenchymal sectors of these mixed tumors. Importantly, mixed tumors in which the minority population of mesenchymal carcinoma cells lacked the expression of CD73, were also sensitized partially to ICB. Thus, these mesenchymal carcinoma cells knocked out for CD73 could no longer protect their epithelial neighbors from immune attack.ConclusionsTaken together, our work suggests that mesenchymal carcinoma cells exert immune-suppressive effects which are also prominent in heterogeneous tumors. Furthermore, targeting the adenosinergic signaling pathway in mesenchymal carcinoma cells can potentiate the efficacy of ICB.ReferenceDongre A, Rashidian M, Reinhardt F, Bagnato A, Keckesova Z, Ploegh HL, Weinberg RA, Epithelial-to-mesenchymal transition contributes to immunosuppression in breast carcinomas. Cancer Res 2017 Aug 1;77(15):3982–3989.


2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Shuang Qin ◽  
Linping Xu ◽  
Ming Yi ◽  
Shengnan Yu ◽  
Kongming Wu ◽  
...  

Abstract The emergence of immune checkpoint inhibitors (ICIs), mainly including anti-programmed cell death protein 1/programmed cell death ligand 1 (PD-1/PD-L1) and anti-cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) monoclonal antibodies (mAbs), has shaped therapeutic landscape of some type of cancers. Despite some ICIs have manifested compelling clinical effectiveness in certain tumor types, the majority of patients still showed de novo or adaptive resistance. At present, the overall efficiency of immune checkpoint therapy remains unsatisfactory. Exploring additional immune checkpoint molecules is a hot research topic. Recent studies have identified several new immune checkpoint targets, like lymphocyte activation gene-3 (LAG-3), T cell immunoglobulin and mucin-domain containing-3 (TIM-3), T cell immunoglobulin and ITIM domain (TIGIT), V-domain Ig suppressor of T cell activation (VISTA), and so on. The investigations about these molecules have generated promising results in preclinical studies and/or clinical trials. In this review, we discussed the structure and expression of these newly-characterized immune checkpoints molecules, presented the current progress and understanding of them. Moreover, we summarized the clinical data pertinent to these recent immune checkpoint molecules as well as their application prospects.


2020 ◽  
Author(s):  
Xiaohong Xie ◽  
Liqiang Wang ◽  
Yinyin Qin ◽  
Xinqing Lin ◽  
Zhanhong Xie ◽  
...  

Abstract Objective: NUT midline carcinoma (NMC), a rare type of squamous cell carcinoma, is genetically characterised by NUT midline carcinoma family member 1 (NUTM1) gene rearrangement. NMC can arise from the lungs; however, there is no standard for the management of primary pulmonary NMC. This study aimed to confirm the clinical features and report the treatments, especially with immune checkpoint inhibitors (ICIs), and outcomes of patients with primary pulmonary NMC. Methods: A retrospective review of patients with primary pulmonary NMC was performed in the First Affiliated Hospital of Guangzhou Medical University between January 2015 and December 2018. Clinical manifestations as well as radiographic and pathological findings were recorded. Whole-exome sequencing (WES), a predictor for ICI response, was used to determine the tumour mutational burden (TMB). Treatments, especially by immune checkpoint blockade, and patient survival were analysed.Results: Seven patients with primary pulmonary mass (four men and three women) with a mean age of 42 years (range, 23–74) who were diagnosed with NMC according to NUT immunohistochemistry staining were included for analysis. One patient had a rare fusion of CHRM5-NUTM1 by tumour sequencing. A wide range of TMB (1.75–73.81 mutations/Mbp) was observed. The initial treatments included chemotherapy (5/7, 71.4%), surgery (1/7, 14.3%), and radiotherapy (1/7, 14.3%). Five patients (5/7, 71.4%) received ICIs (programmed cell death protein 1 [PD1]/programmed cell death ligand 1 [PDL1] monoclonal antibody) as second- or higher-line treatments. The median overall survival (OS) was 4.1 months (range, 1.5–26.7 months). Conclusions: Patients with primary pulmonary NMC have a poor prognosis and chemotherapy is often preferred. Checkpoint immunotherapy is a good option as the second- or higher-line treatment. TMB seems to be not associated with OS.


2021 ◽  
Vol 11 ◽  
Author(s):  
Muhammet Ozer ◽  
Andrew George ◽  
Suleyman Yasin Goksu ◽  
Thomas J. George ◽  
Ilyas Sahin

The prevalence of primary liver cancer is rapidly rising all around the world. Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer. Unfortunately, the traditional treatment methods to cure HCC showed poor efficacy in patients who are not candidates for liver transplantation. Until recently, tyrosine kinase inhibitors (TKIs) were the front-line treatment for unresectable liver cancer. However, rapidly emerging new data has drastically changed the landscape of HCC treatment. The combination treatment of atezolizumab plus bevacizumab (immunotherapy plus anti-VEGF) was shown to provide superior outcomes and has become the new standard first-line treatment for unresectable or metastatic HCC. Currently, ongoing clinical trials with immune checkpoint blockade (ICB) have focused on assessing the benefit of antibodies against programmed cell death 1 (PD-1), programmed cell death-ligand 1 (PD-L1), and cytotoxic T-lymphocyte- associated antigen 4 (CTLA-4) as monotherapies or combination therapies in patients with HCC. In this review, we briefly discuss the mechanisms underlying various novel immune checkpoint blockade therapies and combination modalities along with recent/ongoing clinical trials which may generate innovative new treatment approaches with potential new FDA approvals for HCC treatment in the near future.


Sign in / Sign up

Export Citation Format

Share Document