scholarly journals CircPVT1 promotes proliferation of lung squamous cell carcinoma by binding to miR-30d/e

Author(s):  
Jie Shi ◽  
Xin Lv ◽  
Lizhong Zeng ◽  
Wei Li ◽  
Yujie Zhong ◽  
...  

Abstract Background Circular RNAs (circRNAs) are a new type of extensive non-coding RNAs that regulate the activation and progression of different human diseases, including cancer. However, information on the underlying mechanisms and clinical significance of circRNAs in lung squamous cell carcinoma (LUSC) remains scant. Methods The expression profile of RNAs in 8 LUSC tissues, and 9 healthy lung tissues were assayed using RNA sequencing (RNA-seq) techniques. Real-time quantitative polymerase chain reaction (qRT-PCR) was used to profile the expression of circPVT1 and its relationship with the prognosis of LUSC, i.e., survival analysis. Moreover, in vitro and in vivo experiments were performed to evaluate the impacts of circPVT1 on the growth of tumors. RNA pull-down tests, mass spectrometry, dual-luciferase reporter assessment, and RNA immune-precipitation tests were further conducted to interrogate the cross-talk between circPVT1, HuR, or miR-30d/e in LUSC. Results Our data showed that circPVT1 was upregulated in LUSC tissues, serum, and cell lines. LUSC patients with higher circPVT1 expression exhibited shorter survival rates. The in vivo and in vitro data revealed that circPVT1 promotes the proliferation of LUSC cells. Additionally, mechanistic analysis showed that HuR regulated circPVT1. On the other hand, circPVT1 acted as a competing endogenous RNA (ceRNA) of miR-30d and miR-30e in alleviating the suppressive influences of miR-30d and miR-30e on its target cyclin F (CCNF). Conclusion CircPVT1 promotes LUSC progression via HuR/circPVT1/miR-30d and miR-30e/CCNF cascade. Also, it acts as a novel diagnostic biomarker or treatment target of individuals diagnosed with LUSC.

2021 ◽  
Vol 11 ◽  
Author(s):  
Xiaodan Wu ◽  
Yihui Fan ◽  
Yupeng Liu ◽  
Biao Shen ◽  
Haimin Lu ◽  
...  

Long non-coding RNAs (lncRNAs) have been shown to play important roles in human cancers, including esophageal squamous cell carcinoma (ESCC). In the current study, we identified CCAT2 as a relevant lncRNA and investigated its role in the progression of ESCC. RT-qPCR was adopted to detect CCAT2 expression in collected clinical samples, ESCC cell lines, and a normal cell line. We tested the correlation between CCAT2 expression and the prognosis of ESCC. RT-qPCR or immunoblotting was adopted to detect the expression of relevant factors in ESCC tissues or cells. Cell proliferation, apoptosis, migration, and invasion were examined by colony formation assay, flow cytometry, scratch assay, and Transwell assay, respectively, while subcutaneous tumorigenesis in nude mice was adopted to examine the role of CCAT2 in tumorigenesis of ESCC cells in vivo. Bioinformatics analysis, dual luciferase reporter assay, and RIP were conducted for the target relationship profiling. Me-RIP was adopted to detect m6A modification level of TK1 in ESCC tissues or cells. Upregulated CCAT2, IGF2BP2, and TK1 expression and inhibited miR-200b expression were observed in ESCC cells and tissues. CCAT2 bound to miR-200b and reduced its expression, leading to upregulated IGF2BP2 expression. IGF2BP2 improved TK1 mRNA stability to enhance its expression by recognizing its m6A modification. CCAT2 promoted the migration and invasion of ESCC cells in vitro, and tumorigenesis in vivo by upregulating TK1 expression, while overexpression of miR-200b reversed these effects of CCAT2. Overall, this study suggests that CCAT2 competitively binds to miR-200b to alleviate its inhibitory effects on IGF2BP2 expression, resulting in elevated TK1 expression, and an ensuing promotion of the development of ESCC.


Author(s):  
Yaxing Wei ◽  
Wenjie Wu ◽  
Yanan Jiang ◽  
Hao Zhou ◽  
Yin Yu ◽  
...  

Abstract Background Due to the high recurrence and low 5-year survival rates of esophageal squamous cell carcinoma (ESCC) after treatment, the discovery of novel drugs for recurrence chemoprevention is of particular importance. Methods We screened the FDA-approved drug library and found that Nuplazid, an atypical antipsychotic that acts as an effective 5-HT 2 A receptor inverse agonist, could potentially exert anticancer effects in vitro and in vivo on ESCC. Results Pull-down results indicated that Nuplazid binds with p21-activated kinase 4 (PAK4), and a kinase assay showed that Nuplazid strongly suppressed PAK4 kinase activity. Moreover, Nuplazid exhibited inhibitory effects on ESCC in vivo. Conclusions Our findings indicate that Nuplazid can suppress ESCC progression through targeting PAK4.


2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Peng Xu ◽  
Kang Hu ◽  
Ping Zhang ◽  
Zhi-Gang Sun ◽  
Nan Zhang

Abstract Background N6-methyladenosine (m6A) is a dynamic and reversible internal RNA structure of eukaryotic mRNA. YTH domain family 2 (YTHDF2), an m6A-specific reader YTH domain family, plays fundamental roles in several types of cancer. However, the function of YTHDF2 in lung squamous cell carcinoma (LUSC) remains elusive. Methods The knockdown and overexpression of YTHDF2 in LUSC cells were conducted to detect the biological characteristics of YTHDF2. In vivo assays, the role of YTHDF2 in tumor growth was further uncovered. In vitro assays, YTHDF2 was confirmed to be involved in activating the mTOR/AKT signaling and YTHDF2 overexpression induced the EMT process in LUSC. Clinically, immunohistochemical staining revealed the relationship between YTHDF2 expression levels and the clinicopathological characteristics of lung squamous cell carcinoma patients. Moreover, quantitative PCR (qPCR), western blot, CCK8 assay, transwell assay, and wound-healing assay were used to detect the expression level and function of YTHDF2 under hypoxia exposure in LUSC cells. Results The results showed that hypoxia-mediated YTHDF2 overexpression promotes cell proliferation and invasion by activating the mTOR/AKT axis, and YTHDF2 overexpression induces the EMT process in LUSC. Moreover, YTHDF2 is closely associated with pN (pN– 37.0%, pN + 73.9%; P = 0.002) and pTNM stage (pI 50.0%, PII 43.3%, pIIIa 80.6%; P = 0.007), ultimately resulting in poor survival for LUSC patients. Conclusion In brief, the results highlight high-YTHDF2 expression predicted a worse prognosis of LUSC, while hypoxia-mediated YTHDF2 overexpression promotes lung squamous cell carcinoma progression by activation of the mTOR/AKT signaling pathway.


2019 ◽  
Vol 133 (9) ◽  
pp. 1053-1066 ◽  
Author(s):  
Linli Tian ◽  
Jing Cao ◽  
Hui Jiao ◽  
Jiarui Zhang ◽  
Xiuxia Ren ◽  
...  

Abstract Background: Circular RNAs (circRNAs) are a class of non-coding RNAs (ncRNAs) broadly expressed in cells of various species. However, the molecular mechanisms that link circRNAs with laryngeal squamous cell carcinoma (LSCC) are not well understood. In the present study, we attempted to provide novel basis for targeted therapy for LSCC from the aspect of circRNA–microRNA (miRNA)–mRNA interaction. Methods: We investigated the expression of circRNAs in three paired LSCC tissues and adjacent non-tumor tissues by microarray analysis. Differentially expressed circRNAs were identified between LSCC tissues and non-cancerous matched tissues, including 527 up-regulated circRNAs and 414 down-regulated circRNAs. We focused on hsa_circ_0059354, which is located on chromosome 20 and derived from RASSF2, and thus we named it circRASSF2. Results: circRASSF2 was found to be significantly up-regulated in LSCC tissues and LSCC cell lines compared with paired adjacent non-tumorous tissues and normal cells. Moreover, knockdown of circRASSF2 significantly inhibited cell proliferation and migration in vitro, which was blocked by miR-302b-3p inhibitor. Bioinformatics analysis predicted that there is a circRASSF2/miR-302b-3p/ insulin-like growth factor 1 receptor (IGF-1R) axis in LSCC progression. Dual-luciferase reporter system validated the direct interaction of circRASSF2, miR-302b-3p, and IGF-1R. Western blot verified that inhibition of circRASSF2 decreased IGF-1R expression. Furthermore, silencing circRASSF2 suppressed LSCC growth in vivo. Importantly, we demonstrated that circRASSF2 was up-regulated in serum exosomes from LSCC patients. Altogether, silencing circRASSF2 suppresses progression of LSCC by interacting with miR-302b-3p and decreasing inhibiting IGF-1R expression. Conclusion: In conclusion, these data suggest that circRASSF2 is a central component linking circRNAs to progression of LSCC via an miR-302b-3p/IGF-1R axis.


2021 ◽  
Author(s):  
Yi He ◽  
Bin Li ◽  
Yang Yang ◽  
Rong Hua ◽  
Zhigang Li

Abstract Background: Long non-coding RNAs (lncRNAs) are reported act as important regulators in various cancers. LncRNA JPX was identified as an oncogenic regulator in lung cancer. However, the function of lncRNA JPX in the progression of esophageal squamous cell carcinoma (ESCC) remains unclear. Methods: The effects and molecular mechanism of JPX on the progression of ESCC were investigated using fluorescence in situ hybridization (FISH), cell proliferation, quantitative real-time PCR (qRT-PCR), western blot, dual luciferase, cell cycle, 5-Ethynyl-2′-Deoxyuridine (EdU) incorporation, transwell, RNA pull-down, tube formation and RNA immunoprecipitation (RIP) assays. Results: In the present study, we found JPX was highly expressed in tissues of ESCC patients and different ESCC cell lines. Functional assays demonstrated that JPX promoted ESCC cell proliferation, migration and invasion in vitro and tumor growth in vivo. Moreover, we found JPX promoted ESCC mobility in vitro. Mechanistically, the results showed that JPX functions as a sponge of miR-516b-5p, which targets an oncogene vascular endothelial growth factor A (VEGFA) in ESCC cells. Interactions between miR-516b-5p and JPX or VEGFA were confirmed by luciferase reporter assays. Furthermore, inhibition of JPX significantly attenuated the cell growth and mobility ability of ESCC cells in vitro. In addition, miR-516b-5p overexpression abrogated JPX enhanced proliferation, migration, invasion, and angiogenesis of ESCC cells. Conclusions: Our study demonstrated that JPX played an important role in promoting ESCC progression via the miR-516b-5p/VEGFA pathway and might serve as a promising novel therapeutic target for ESCC patients.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yi Zhang ◽  
Kaisai Tian ◽  
Enhui Zhou ◽  
Xiaocheng Xue ◽  
Shiling Yan ◽  
...  

Recently, circular RNAs have been shown to function as critical regulators of many human cancers. However, the circRNA mechanism in laryngeal squamous cell carcinoma (LSCC) remains elusive. Recent investigations using bioinformatics analysis revealed high expression of hsa_circ_0023305 in LSCC tissues compared to normal tissues. Furthermore, we discovered that hsa_circ_0023305 expression level was positively correlated to tumor/node/metastasis (TNM) stage as well as lymph node metastasis in LSCC. Moreover, higher hsa_circ_0023305 levels were correlated to poorer LSCC patient outcomes. Knockdown of hsa_circ_0023305 significantly inhibited LSCC cell proliferation, invasion, and migration abilities. Our team validated that hsa_circ_0023305 functioned as a miR-218-5p sponge from a mechanistic perspective, targeting the melastatin-related transient receptor potential 7 (TRPM7) in LSCC cells. TRPM7 regulates a nonselective cation channel and promotes cancer proliferation and metastasis. Our data demonstrated that miR-218-5p was downregulated in LSCC and that miR-218-5p upregulation repressed LSCC proliferation and invasion both in vivo and in vitro. Additionally, we found that hsa_circ_0023305-mediated upregulation of TRPM7 inhibited miR-218-5p and contributed to LSCC migration, proliferation, and invasion. In summary, these data propose a new mechanism by which the hsa_circ_0023305/miR-218-5p/TRPM7 network enhances LSCC progression.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Feng Qiu ◽  
Bin Qiao ◽  
Nan Zhang ◽  
Zheng Fang ◽  
Lu Feng ◽  
...  

Abstract Background Circular RNAs (circRNAs) could participate in cis-dichlorodiammineplatinum (DDP) resistance of human cancers. However, circRNAs role in DDP resistance of oral squamous cell carcinoma (OSCC) progression remains largely undeveloped. Here, we attempted to explore the role of circ-SCMH1 (ID hsa_circ_0011946) in acquired DDP resistance. Methods Expression of circ-SCMH1, microRNA (miR)-338-3p and Lin-28 homolog B (LIN28B) was detected by real-time quantitative PCR and western blotting, and their interactions were confirmed by dual-luciferase reporter assay, RNA immunoprecipitation and RNA pull-down assay. DDP resistance was assessed by MTT assay, colony formation assay, flow cytometry, transwell assays, western blotting, and xenograft experiment. Transmission electron microscopic analysis, nanoparticle tracking analysis and western blotting confirmed the characterizations of extracellular vesicles (EVs). Results Circ-SCMH1 was upregulated in DDP-resistant OSCC tissues and cells (SCC-15/DDP and CAL-27/DDP). Circ-SCMH1 knockdown suppressed the half-maximal inhibitory concentration of DDP, colony formation, and migration/invasion in SCC-15/DDP and CAL-27/DDP cells, but promoted apoptosis rate and apoptotic proteins (Bax and cleaved-caspase-3) expression. However, silencing miR-338-3p abrogated above effects, and overexpressing miR-338-3p mimicked that. Similarly, miR-338-3p overexpression role could be counteracted by restoring LIN28B. Moreover, interfering circ-SCMH1 retarded tumor growth of SCC-15/DDP cells in vivo with DDP treatment or not. Mechanistically, circ-SCMH1 directly sponged miR-338-3p in regulating LIN28B, a target gene for miR-338-3p. Notably, circ-SCMH1 was an EVs cargo, and DDP-resistant OSCC cells-derived EVs could provoke circ-SCMH1 upregulation in parental cells. Conclusion Circ-SCMH1 contributes to chemoresistance of DDP-resistant OSCC cells partially via EVs secretion and circ-SCMH1/miR-338-3p/LIN28B axis.


2021 ◽  
Author(s):  
Min Lu ◽  
Kaixuan Wang ◽  
Wenxiang Ji ◽  
Yongfeng Yu ◽  
Ziming Li ◽  
...  

Abstract Background: Variations in fibroblast growth factor receptor 1 (FGFR1), which occur frequently, are common driver mutations of lung squamous cell carcinoma. Immune checkpoint inhibitors targeting programmed death-1 (PD-1) and programmed death ligand-1 (PD-L1) are powerful anticancer weapons. Activation of FGFR1 leads to tumorigenesis through multiple downstream molecules, including Yes-associated protein (YAP), but whether and how FGFR1 regulates tumor immune evasion remain largely unclear. Methods: H520 and HCC95 cells were treated with siRNA and plasmids to increase or decrease the expression of FGFR1, YAP and PD-L1, as assessed by molecular assays of protein and mRNA expression. The interaction between YAP and PD-L1 was verified by chromatin immunoprecipitation. After FGFR1 knockdown by shRNA, cancer cells were cocultured with Jurkat T cells, and then cell proliferation and activity were assessed. In C57BL/6 mice, the tumor immune microenvironment was analyzed by flow cytometry, immunofluorescence and immunohistochemistry after FGFR1 knockdown. The effect of the combination of FGFR1 knockdown and PD-1 blockade was explored both in vitro and in vivo. Results: In H520 and HCC95 cells, FGFR1 upregulated PD-L1 expression via YAP, and YAP initiated the transcription of PD-L1 after binding to its promoter region. Both in vitro and in vivo, FGFR1 knockdown decreased tumor growth and reduced immune escape and reactivation of T cells. The combination of FGFR1 knockdown and PD-1 blockade synergistically exerted antitumor effects. In human LSQCC, the expression of fibroblast growth factor 2 (FGF2), the activator of FGFR1, was positively correlated with that of PD-L1 at the mRNA level. Conclusions: The FGFR1/YAP/PD-L1 regulatory axis mediates tumor-associated immune suppression in lung squamous cell carcinoma, and FGFR1 knockdown reactivates T cells in the tumor microenvironment. Synergistic inhibition of both FGFR1 and PD-1/PD-L1 may be a possible treatment for lung cancer patients.


Sign in / Sign up

Export Citation Format

Share Document