scholarly journals Deciphering the nonsense-mediated mRNA decay pathway to identify cancer cell vulnerabilities for effective cancer therapy

Author(s):  
Roberta Bongiorno ◽  
Mario Paolo Colombo ◽  
Daniele Lecis

AbstractNonsense-mediated mRNA decay (NMD) is a highly conserved cellular surveillance mechanism, commonly studied for its role in mRNA quality control because of its capacity of degrading mutated mRNAs that would produce truncated proteins. However, recent studies have proven that NMD hides more complex tasks involved in a plethora of cellular activities. Indeed, it can control the stability of mutated as well as non-mutated transcripts, tuning transcriptome regulation. NMD not only displays a pivotal role in cell physiology but also in a number of genetic diseases. In cancer, the activity of this pathway is extremely complex and it is endowed with both pro-tumor and tumor suppressor functions, likely depending on the genetic context and tumor microenvironment. NMD inhibition has been tested in pre-clinical studies showing favored production of neoantigens by cancer cells, which can stimulate the triggering of an anti-tumor immune response. At the same time, NMD inhibition could result in a pro-tumor effect, increasing cancer cell adaptation to stress. Since several NMD inhibitors are already available in the clinic to treat genetic diseases, these compounds could be redirected to treat cancer patients, pending the comprehension of these variegated NMD regulation mechanisms. Ideally, an effective strategy should exploit the anti-tumor advantages of NMD inhibition and simultaneously preserve its intrinsic tumor suppressor functions. The targeting of NMD could provide a new therapeutic opportunity, increasing the immunogenicity of tumors and potentially boosting the efficacy of the immunotherapy agents now available for cancer treatment.

2010 ◽  
Vol 38 (6) ◽  
pp. 1500-1505 ◽  
Author(s):  
Marta Vicente-Crespo ◽  
Isabel M. Palacios

NMD (nonsense-mediated mRNA decay) is a surveillance mechanism that degrades transcripts containing nonsense mutations, preventing the translation of potentially harmful truncated proteins. Although the mechanistic details of NMD are gradually being understood, the physiological role of this RNA surveillance pathway still remains largely unknown. The core NMD genes Upf1 (up-frameshift suppressor 1) and Upf2 are essential for animal viability in the fruitfly, mouse and zebrafish. These findings may reflect an important role for NMD during animal development. Alternatively, the lethal phenotypes of upf1 and upf2 mutants might be due to their function in NMD-independent processes. In the present paper, we describe the phenotypes observed when the NMD factors are mutated in various organisms, and discuss findings that might shed light on the function of NMD in cellular growth and development of an organism.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Jungyun Park ◽  
Jwa-Won Seo ◽  
Narae Ahn ◽  
Seokju Park ◽  
Jungwook Hwang ◽  
...  

Abstract The stability and quality of metazoan mRNAs are under microRNA (miRNA)-mediated and nonsense-mediated control. Although UPF1, a core mediator of nonsense-mediated mRNA decay (NMD), mediates the decay of target mRNA in a 3′UTR-length-dependent manner, the detailed mechanism remains unclear. Here, we suggest that 3′UTR-length-dependent mRNA decay is not mediated by nonsense mRNAs but rather by miRNAs that downregulate target mRNAs via Ago-associated UPF1/SMG7. Global analyses of mRNAs in response to UPF1 RNA interference in miRNA-deficient cells reveal that 3′UTR-length-dependent mRNA decay by UPF1 requires canonical miRNA targeting. The destabilization of miRNA targets is accomplished by the combination of Ago2 and UPF1/SMG7, which may recruit the CCR4-NOT deadenylase complex. Indeed, loss of the SMG7-deadenylase complex interaction increases the levels of transcripts regulated by UPF1-SMG7. This UPF1/SMG7-dependent miRNA-mediated mRNA decay pathway may enable miRNA targeting to become more predictable and expand the miRNA-mRNA regulatory network.


2006 ◽  
Vol 20 (4) ◽  
Author(s):  
Ivan Cajigas ◽  
Paloma Guzzardo ◽  
Viviana Figueroa ◽  
Heike Krebber ◽  
Carlos Gonzalez

Sign in / Sign up

Export Citation Format

Share Document