scholarly journals Functional genomics analysis identifies T and NK cell activation as a driver of epigenetic clock progression

2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Thomas H. Jonkman ◽  
Koen F. Dekkers ◽  
Roderick C. Slieker ◽  
Crystal D. Grant ◽  
M. Arfan Ikram ◽  
...  

Abstract Background Epigenetic clocks use DNA methylation (DNAm) levels of specific sets of CpG dinucleotides to accurately predict individual chronological age. A popular application of these clocks is to explore whether the deviation of predicted age from chronological age is associated with disease phenotypes, where this deviation is interpreted as a potential biomarker of biological age. This wide application, however, contrasts with the limited insight in the processes that may drive the running of epigenetic clocks. Results We perform a functional genomics analysis on four epigenetic clocks, including Hannum’s blood predictor and Horvath’s multi-tissue predictor, using blood DNA methylome and transcriptome data from 3132 individuals. The four clocks result in similar predictions of individual chronological age, and their constituting CpGs are correlated in DNAm level and are enriched for similar histone modifications and chromatin states. Interestingly, DNAm levels of CpGs from the clocks are commonly associated with gene expression in trans. The gene sets involved are highly overlapping and enriched for T cell processes. Further analysis of the transcriptome and methylome of sorted blood cell types identifies differences in DNAm between naive and activated T and NK cells as a probable contributor to the clocks. Indeed, within the same donor, the four epigenetic clocks predict naive cells to be up to 40 years younger than activated cells. Conclusions The ability of epigenetic clocks to predict chronological age involves their ability to detect changes in proportions of naive and activated immune blood cells, an established feature of immuno-senescence. This finding may contribute to the interpretation of associations between clock-derived measures and age-related health outcomes.

Author(s):  
Pavanello ◽  
Campisi ◽  
Tona ◽  
Lin ◽  
Iliceto

DNA methylation (DNAm) is an emerging estimator of biological aging, i.e., the often-defined “epigenetic clock”, with a unique accuracy for chronological age estimation (DNAmAge). In this pilot longitudinal study, we examine the hypothesis that intensive relaxing training of 60 days in patients after myocardial infarction and in healthy subjects may influence leucocyte DNAmAge by turning back the epigenetic clock. Moreover, we compare DNAmAge with another mechanism of biological age, leucocyte telomere length (LTL) and telomerase. DNAmAge is reduced after training in healthy subjects (p = 0.053), but not in patients. LTL is preserved after intervention in healthy subjects, while it continues to decrease in patients (p = 0.051). The conventional negative correlation between LTL and chronological age becomes positive after training in both patients (p < 0.01) and healthy subjects (p < 0.05). In our subjects, DNAmAge is not associated with LTL. Our findings would suggest that intensive relaxing practices influence different aging molecular mechanisms, i.e., DNAmAge and LTL, with a rejuvenating effect. Our study reveals that DNAmAge may represent an accurate tool to measure the effectiveness of lifestyle-based interventions in the prevention of age-related diseases.


2020 ◽  
Author(s):  
Leonard C Steg ◽  
Gemma L Shireby ◽  
Jennifer Imm ◽  
Jonathan P Davies ◽  
Robert Flynn ◽  
...  

Abstract Induced pluripotent stem cells (iPSCs) and their differentiated neurons (iPSC-neurons) are a widely used cellular model in the research of the central nervous system. However, it is unknown how well they capture age-associated processes, particularly given that pluripotent cells are only present during the early stages of mammalian development. Epigenetic clocks utilize coordinated age-associated changes in DNA methylation to make predictions that correlate strongly with chronological age, and is has been shown that the induction of pluripotency rejuvenates predicted epigenetic age. As existing clocks are not optimized for the study of brain development, to investigate more precisely the epigenetic age of iPSCs and iPSC-neurons, here, we establish the fetal brain clock (FBC), a bespoke epigenetic clock trained in prenatal neurodevelopmental samples. Our data show that the FBC outperforms other established epigenetic clocks in predicting the age of fetal brain samples. We then applied the FBC to DNA methylation data of cellular datasets that have profiled iPSCs and iPSC-derived neuronal precursor cells and neurons and find that these cell types are characterized by a fetal epigenetic age. Furthermore, while differentiation from iPSCs to neurons significantly increases the epigenetic age, iPSC-neurons are still predicted as having fetal epigenetic age. Together our findings reiterate the need for better understanding of the limitations of existing epigenetic clocks for answering biological research questions and highlight a potential limitation of iPSC-neurons as a cellular model for the research of age-related diseases as they might not fully recapitulate an aged phenotype.


2020 ◽  
Author(s):  
Leonard C. Steg ◽  
Gemma L. Shireby ◽  
Jennifer Imm ◽  
Jonathan P. Davies ◽  
Robert Flynn ◽  
...  

AbstractInduced pluripotent stem cells (iPSCs) and their differentiated neurons (iPSC-neurons) are a widely used cellular model in the research of the central nervous system. However, it is unknown how well they capture age-associated processes, particularly given that pluripotent cells are only present during the early stages of mammalian development. Epigenetic clocks utilize coordinated age-associated changes in DNA methylation to make predictions that correlate strongly with chronological age, and is has been shown that the induction of pluripotency rejuvenates predicted epigenetic age. As existing clocks are not optimized for the study of brain development, to investigate more precisely the epigenetic age of iPSCs and iPSC-neurons, here, we establish the fetal brain clock (FBC), a bespoke epigenetic clock trained in prenatal neurodevelopmental samples. Our data show that the FBC outperforms other established epigenetic clocks in predicting the age of fetal brain samples. We then applied the FBC to DNA methylation data of cellular datasets that have profiled iPSCs and iPSC-derived neuronal precursor cells and neurons and find that these cell types are characterized by a fetal epigenetic age. Furthermore, while differentiation from iPSCs to neurons significantly increases the epigenetic age, iPSC-neurons are still predicted as having fetal epigenetic age. Together our findings reiterate the need for better understanding of the limitations of existing epigenetic clocks for answering biological research questions and highlight a potential limitation of iPSC-neurons as a cellular model for the research of age-related diseases as they might not fully recapitulate an aged phenotype.


GeroScience ◽  
2021 ◽  
Author(s):  
Steve Horvath ◽  
Joseph A. Zoller ◽  
Amin Haghani ◽  
Anna J. Jasinska ◽  
Ken Raj ◽  
...  

AbstractMethylation levels at specific CpG positions in the genome have been used to develop accurate estimators of chronological age in humans, mice, and other species. Although epigenetic clocks are generally species-specific, the principles underpinning them appear to be conserved at least across the mammalian class. This is exemplified by the successful development of epigenetic clocks for mice and several other mammalian species. Here, we describe epigenetic clocks for the rhesus macaque (Macaca mulatta), the most widely used nonhuman primate in biological research. Using a custom methylation array (HorvathMammalMethylChip40), we profiled n = 281 tissue samples (blood, skin, adipose, kidney, liver, lung, muscle, and cerebral cortex). From these data, we generated five epigenetic clocks for macaques. These clocks differ with regard to applicability to different tissue types (pan-tissue, blood, skin), species (macaque only or both humans and macaques), and measure of age (chronological age versus relative age). Additionally, the age-based human-macaque clock exhibits a high age correlation (R = 0.89) with the vervet monkey (Chlorocebus sabaeus), another Old World species. Four CpGs within the KLF14 promoter were consistently altered with age in four tissues (adipose, blood, cerebral cortex, skin). Future studies will be needed to evaluate whether these epigenetic clocks predict age-related conditions in the rhesus macaque.


1998 ◽  
Vol 188 (5) ◽  
pp. 953-960 ◽  
Author(s):  
Anna Pessino ◽  
Simona Sivori ◽  
Cristina Bottino ◽  
Angela Malaspina ◽  
Luigia Morelli ◽  
...  

Summary NKp46 has been shown to represent a novel, natural killer (NK) cell–specific surface molecule, involved in human NK cell activation. In this study, we further analyzed the role of NKp46 in natural cytotoxicity against different tumor target cells. We provide direct evidence that NKp46 represents a major activating receptor involved in the recognition and lysis of both human and murine tumor cells. Although NKp46 may cooperate with other activating receptors (including the recently identified NKp44 molecule) in the induction of NK-mediated lysis of human tumor cells, it may represent the only human NK receptor involved in recognition of murine target cells. Molecular cloning of the cDNA encoding the NKp46 molecule revealed a novel member of the immunoglobulin (Ig) superfamily, characterized by two C2-type Ig-like domains in the extracellular portion. The transmembrane region contains the positively charged amino acid Arg, which is possibly involved in stabilizing the association with CD3ζ chain. The cytoplasmic portion, spanning 30 amino acids, does not contain immunoreceptor tyrosine-based activating motifs. Analysis of a panel of human/hamster somatic cell hybrids revealed segregation of the NKp46 gene on human chromosome 19. Assessment of the NKp46 mRNA expression in different tissues and cell types unambiguously confirmed the strict NK cell specificity of the NKp46 molecule. Remarkably, in line with the ability of NKp46 to recognize ligand(s) on murine target cells, the cDNA encoding NKp46 was found to be homologous to a cDNA expressed in murine spleen. In conclusion, this study reports the first characterization of the molecular structure of a NK-specific receptor involved in the mechanism of NK cell activation during natural cytotoxicity.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Victoria J Sugrue ◽  
Joseph Alan Zoller ◽  
Pritika Narayan ◽  
Ake T Lu ◽  
Oscar J Ortega-Recalde ◽  
...  

In mammals, females generally live longer than males. Nevertheless, the mechanisms underpinning sex-dependent longevity are currently unclear. Epigenetic clocks are powerful biological biomarkers capable of precisely estimating chronological age and identifying novel factors influencing the aging rate using only DNA methylation data. In this study, we developed the first epigenetic clock for domesticated sheep (Ovis aries), which can predict chronological age with a median absolute error of 5.1 months. We have discovered that castrated male sheep have a decelerated aging rate compared to intact males, mediated at least in part by the removal of androgens. Furthermore, we identified several androgen-sensitive CpG dinucleotides that become progressively hypomethylated with age in intact males, but remain stable in castrated males and females. Comparable sex-specific methylation differences in MKLN1 also exist in bat skin and a range of mouse tissues that have high androgen receptor expression, indicating it may drive androgen-dependent hypomethylation in divergent mammalian species. In characterising these sites, we identify biologically plausible mechanisms explaining how androgens drive male-accelerated aging.


2020 ◽  
Author(s):  
VJ Sugrue ◽  
JA Zoller ◽  
P Narayan ◽  
AT Lu ◽  
OJ Ortega-Recalde ◽  
...  

SUMMARYIn mammals, females generally live longer than males. Nevertheless, the mechanisms underpinning sex-dependent longevity are currently unclear. Epigenetic clocks are powerful biological biomarkers capable of precisely estimating chronological age using only DNA methylation data. These clocks have been used to identify novel factors influencing the aging rate, but few studies have examined the performance of epigenetic clocks in divergent mammalian species. In this study, we developed the first epigenetic clock for domesticated sheep (Ovis aries), and using 185 CpG sites can predict chronological age with a median absolute error of 5.1 months from ear punch and blood samples. We have discovered that castrated male sheep have a decelerated aging rate compared to intact males, mediated at least in part by the removal of androgens. Furthermore, we identified several androgen-sensitive CpG dinucleotides that become progressively hypomethylated with age in intact males, but remain stable in castrated males and females. Many of these androgen sensitive demethylating sites are regulatory in nature and located in genes with known androgen-dependent regulation, such as MKLN1, LMO4 and FN1. Comparable sex-specific methylation differences in MKLN1 also exist in mouse muscle (p=0.003) but not blood, indicating that androgen dependent demethylation exists in multiple mammalian groups, in a tissue-specific manner. In characterising these sites, we identify biologically plausible mechanisms explaining how androgens drive male-accelerated aging.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Pei-Fen Kuan ◽  
Xu Ren ◽  
Sean Clouston ◽  
Xiaohua Yang ◽  
Katherine Jonas ◽  
...  

AbstractPosttraumatic stress disorder (PTSD) is associated with shortened lifespan and healthspan, which suggests accelerated aging. Emerging evidence suggests that methylation age may be accelerated in PTSD. It is important to examine whether transcriptional age is also accelerated because transcriptome is highly dynamic, associated with age-related outcomes, and may offer greater insight into the premature aging in PTSD. This study is the first reported investigation of the relationship between transcriptional age and PTSD. Using RNA-Seq data from our previous study on 324 World Trade Center responders (201 never had PTSD, 81 with current PTSD, and 42 with past PTSD), as well as a transcriptional age calculator (RNAAgeCalc) recently developed by our group, we found that responders with current PTSD, compared with responders without a PTSD diagnosis, showed accelerated transcriptional aging (p = 0.0077) after adjustment for chronological age and race. We compared our results to the epigenetic aging results computed from several epigenetic clock calculators on matching DNA methylation data. GrimAge methylation age acceleration was also associated with PTSD diagnosis (p = 0.0097), and the results remained significant after adjustment for the proportions of immune cell types. PhenoAge, Hannum, and Horvath methylation age acceleration were not reliably related to PTSD. Both epigenetic and transcriptional aging may provide biological insights into the mechanisms underpinning aging in PTSD.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Emily F. Davis-Marcisak ◽  
Allison A. Fitzgerald ◽  
Michael D. Kessler ◽  
Ludmila Danilova ◽  
Elizabeth M. Jaffee ◽  
...  

Abstract Background Tumor response to therapy is affected by both the cell types and the cell states present in the tumor microenvironment. This is true for many cancer treatments, including immune checkpoint inhibitors (ICIs). While it is well-established that ICIs promote T cell activation, their broader impact on other intratumoral immune cells is unclear; this information is needed to identify new mechanisms of action and improve ICI efficacy. Many preclinical studies have begun using single-cell analysis to delineate therapeutic responses in individual immune cell types within tumors. One major limitation to this approach is that therapeutic mechanisms identified in preclinical models have failed to fully translate to human disease, restraining efforts to improve ICI efficacy in translational research. Method We previously developed a computational transfer learning approach called projectR to identify shared biology between independent high-throughput single-cell RNA-sequencing (scRNA-seq) datasets. In the present study, we test this algorithm’s ability to identify conserved and clinically relevant transcriptional changes in complex tumor scRNA-seq data and expand its application to the comparison of scRNA-seq datasets with additional data types such as bulk RNA-seq and mass cytometry. Results We found a conserved signature of NK cell activation in anti-CTLA-4 responsive mouse and human tumors. In human metastatic melanoma, we found that the NK cell activation signature associates with longer overall survival and is predictive of anti-CTLA-4 (ipilimumab) response. Additional molecular approaches to confirm the computational findings demonstrated that human NK cells express CTLA-4 and bind anti-CTLA-4 antibodies independent of the antibody binding receptor (FcR) and that similar to T cells, CTLA-4 expression by NK cells is modified by cytokine-mediated and target cell-mediated NK cell activation. Conclusions These data demonstrate a novel application of our transfer learning approach, which was able to identify cell state transitions conserved in preclinical models and human tumors. This approach can be adapted to explore many questions in cancer therapeutics, enhance translational research, and enable better understanding and treatment of disease.


2020 ◽  
Vol 375 (1811) ◽  
pp. 20190616
Author(s):  
Elaine E. Guevara ◽  
Richard R. Lawler ◽  
Nicky Staes ◽  
Cassandra M. White ◽  
Chet C. Sherwood ◽  
...  

Methylation levels have been shown to change with age at sites across the human genome. Change at some of these sites is so consistent across individuals that it can be used as an ‘epigenetic clock’ to predict an individual's chronological age to within a few years. Here, we examined how the pattern of epigenetic ageing in chimpanzees compares with humans. We profiled genome-wide blood methylation levels by microarray for 113 samples from 83 chimpanzees aged 1–58 years (26 chimpanzees were sampled at multiple ages during their lifespan). Many sites (greater than 65 000) showed significant change in methylation with age and around one-third (32%) of these overlap with sites showing significant age-related change in humans. At over 80% of sites showing age-related change in both species, chimpanzees displayed a significantly faster rate of age-related change in methylation than humans. We also built a chimpanzee-specific epigenetic clock that predicted age in our test dataset with a median absolute deviation from known age of only 2.4 years. However, our chimpanzee clock showed little overlap with previously constructed human clocks. Methylation at CpGs comprising our chimpanzee clock showed moderate heritability. Although the use of a human microarray for profiling chimpanzees biases our results towards regions with shared genomic sequence between the species, nevertheless, our results indicate that there is considerable conservation in epigenetic ageing between chimpanzees and humans, but also substantial divergence in both rate and genomic distribution of ageing-associated sites. This article is part of the theme issue ‘Evolution of the primate ageing process'.


Sign in / Sign up

Export Citation Format

Share Document