scholarly journals Phiclust: a clusterability measure for single-cell transcriptomics reveals phenotypic subpopulations

2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Maria Mircea ◽  
Mazène Hochane ◽  
Xueying Fan ◽  
Susana M. Chuva de Sousa Lopes ◽  
Diego Garlaschelli ◽  
...  

AbstractThe ability to discover new cell phenotypes by unsupervised clustering of single-cell transcriptomes has revolutionized biology. Currently, there is no principled way to decide whether a cluster of cells contains meaningful subpopulations that should be further resolved. Here, we present phiclust (ϕclust), a clusterability measure derived from random matrix theory that can be used to identify cell clusters with non-random substructure, testably leading to the discovery of previously overlooked phenotypes.

2021 ◽  
Author(s):  
Maria Mircea ◽  
Mazene Hochane ◽  
Xueying Fan ◽  
Susana M. Chuva de Sousa Lopes ◽  
Diego Garlaschelli ◽  
...  

The ability to discover new cell populations by unsupervised clustering of single-cell transcriptomics data has revolutionized biology. Currently, there is no principled way to decide, whether a cluster of cells contains meaningful subpopulations that should be further resolved. Here we present SIGMA, a clusterability measure derived from random matrix theory, that can be used to identify cell clusters with non-random sub-structure, testably leading to the discovery of previously overlooked phenotypes.


2021 ◽  
Vol 118 (11) ◽  
pp. e1913931118
Author(s):  
Mor Nitzan ◽  
Michael P. Brenner

Gene expression profiles of a cellular population, generated by single-cell RNA sequencing, contains rich information about biological state, including cell type, cell cycle phase, gene regulatory patterns, and location within the tissue of origin. A major challenge is to disentangle information about these different biological states from each other, including distinguishing from cell lineage, since the correlation of cellular expression patterns is necessarily contaminated by ancestry. Here, we use a recent advance in random matrix theory, discovered in the context of protein phylogeny, to identify differentiation or ancestry-related processes in single-cell data. Qin and Colwell [C. Qin, L. J. Colwell, Proc. Natl. Acad. Sci. U.S.A. 115, 690–695 (2018)] showed that ancestral relationships in protein sequences create a power-law signature in the covariance eigenvalue distribution. We demonstrate the existence of such signatures in scRNA-seq data and that the genes driving them are indeed related to differentiation and developmental pathways. We predict the existence of similar power-law signatures for cells along linear trajectories and demonstrate this for linearly differentiating systems. Furthermore, we generalize to show that the same signatures can arise for cells along tissue-specific spatial trajectories. We illustrate these principles in diverse tissues and organisms, including the mammalian epidermis and lung, Drosophila whole-embryo, adult Hydra, dendritic cells, the intestinal epithelium, and cells undergoing induced pluripotent stem cells (iPSC) reprogramming. We show how these results can be used to interpret the gradual dynamics of lineage structure along iPSC reprogramming. Together, we provide a framework that can be used to identify signatures of specific biological processes in single-cell data without prior knowledge and identify candidate genes associated with these processes.


Patterns ◽  
2020 ◽  
Vol 1 (3) ◽  
pp. 100035 ◽  
Author(s):  
Luis Aparicio ◽  
Mykola Bordyuh ◽  
Andrew J. Blumberg ◽  
Raul Rabadan

Author(s):  
Jan W Dash ◽  
Xipei Yang ◽  
Mario Bondioli ◽  
Harvey J. Stein

Author(s):  
Oriol Bohigas ◽  
Hans A. Weidenmüller

An overview of the history of random matrix theory (RMT) is provided in this chapter. Starting from its inception, the authors sketch the history of RMT until about 1990, focusing their attention on the first four decades of RMT. Later developments are partially covered. In the past 20 years RMT has experienced rapid development and has expanded into a number of areas of physics and mathematics.


Sign in / Sign up

Export Citation Format

Share Document