scholarly journals Engineering the substrate binding site of the hyperthermostable archaeal endo-β-1,4-galactanase from Ignisphaera aggregans

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Sebastian J. Muderspach ◽  
Folmer Fredslund ◽  
Verena Volf ◽  
Jens-Christian Navarro Poulsen ◽  
Thomas H. Blicher ◽  
...  

Abstract Background Endo-β-1,4-galactanases are glycoside hydrolases (GH) from the GH53 family belonging to the largest clan of GHs, clan GH-A. GHs are ubiquitous and involved in a myriad of biological functions as well as being widely used industrially. Endo-β-1,4-galactanases, in particular hydrolyse galactan and arabinogalactan in pectin, a major component of the primary plant cell wall, with important functions in plant defence and application in the food and other industries. Here, we explore the family’s biological diversity by characterizing the first archaeal and hyperthermophilic GH53 galactanase, and utilize it as a scaffold for engineering enzymes with different product lengths. Results A galactanase gene was identified in the genome of the anaerobic hyperthermophilic archaeon Ignisphaera aggregans, and the isolated catalytic domain expressed and characterized (IaGal). IaGal presents the typical (βα)8 barrel structure of clan GH-A enzymes, with catalytic carboxylates at the end of the 4th and 7th barrel strands. Its activity optimum of at least 95 °C and melting point over 100 °C indicate extreme thermostability, a very advantageous property for industrial applications. If enzyme depletion is reduced, so is the need for re-addition, and thus costs. The main stabilizing features of IaGal compared to other structurally characterized members are π–π and cation–π interactions. The length of the substrate binding site—and thus produced oligosaccharide products—is intermediate compared to previously characterized galactanases. Variants inspired by the structural diversity in the GH53 family were rationally designed to shorten or extend the substrate binding groove, in order to modulate product length. Subsite-deleted variants produced shorter products than IaGal, as do the fungal galactanases inspiring the design. IaGal variants engineered with a longer binding site produced a less expected degradation pattern, though still different from that of wild-type IaGal. All variants remained extremely stable. Conclusions We have characterized in detail the most thermophilic endo-β-1,4-galactanase known to date and successfully engineered it to modify the degradation profile, while maintaining much of its desirable thermostability. This is an important achievement as oligosaccharide products length is an important property for industrial and natural GHs alike.

2014 ◽  
Vol 70 (3) ◽  
pp. 676-684 ◽  
Author(s):  
Piotr H. Malecki ◽  
Constantinos E. Vorgias ◽  
Maxim V. Petoukhov ◽  
Dmitri I. Svergun ◽  
Wojciech Rypniewski

The four-domain structure of chitinase 60 fromMoritella marina(MmChi60) is outstanding in its complexity. Many glycoside hydrolases, such as chitinases and cellulases, have multi-domain structures, but only a few have been solved. The flexibility of the hinge regions between the domains apparently makes these proteins difficult to crystallize. The analysis of an active-site mutant ofMmChi60 in an unliganded form and in complex with the substrates NAG4and NAG5revealed significant differences in the substrate-binding site compared with the previously determined complexes of most studied chitinases. A SAXS experiment demonstrated that in addition to the elongated state found in the crystal, the protein can adapt other conformations in solution ranging from fully extended to compact.


2020 ◽  
Vol 17 (1) ◽  
pp. 10-22
Author(s):  
Mojtaba Mortazavi ◽  
Navid Nezafat ◽  
Manica Negahdaripour ◽  
Mohammad J. Raee ◽  
Masoud Torkzadeh-Mahani ◽  
...  

Background:The Cytochromes P450 (CYPs) have an essential role in the oxidation of endogenous and exogenous molecules. The CYPs are identified in all domains of life, but the CYP152A1 from Bacillus subtilis is specially considered for clinical and industrial applications. The molecular cloning of a new type of CYP from Bacillus subtilis was reported, previously. Here, we describe the hidden layer of biological information of the CYP152A1 enzyme, which can help researchers for better understanding of enzyme application. In this study, four rare codons of enzyme, including Arg63, Arg187, Arg276, and Arg338 were identified and evaluated using the bioinformatics web servers.Methods:Through in silico modeling of CYP152A1 via the I-TASSER server, the above-mentioned rare codons were studied in the structure of enzyme that may have an important role in the proper folding of CYP152A1. In the following, the substrate binding site of CYP152A1 was studied by AutoDock Vina, and the heme and palmitic acid were considered as the substrates.Results:The results of docking study elucidated the Arg242 in the active site is closely related to the substrate binding site of CYP152A1, which help us to further clarify the mechanism of the enzyme reaction.Conclusion:Studies of these hidden information’s can enhance our understanding of CYP152A1 folding and protein expression challenges. Moreover, identification of rare codons can help in the rational design of new and effective drugs.


1995 ◽  
Vol 41 (13) ◽  
pp. 160-169 ◽  
Author(s):  
Dieter Jendrossek ◽  
Martina Backhaus ◽  
Meike Andermann

The poly(3-hydroxybutyrate) (PHB) depolymerase structural gene of Comamonas sp. (phaZCsp) was cloned in Escherichia coli and identified by halo formation on PHB-containing solid medium. The nucleotide sequence of a 1719 base pair MboI fragment was determined and contained one large open reading frame (ORF1, 1542 base pairs). This open reading frame encoded the precursor of the PHB depolymerase (514 amino acids; Mr, 53 095), and the deduced amino acid sequence was in agreement with the N-terminal amino acid sequence of the purified PHB depolymerase from amino acid 26 onwards. Analysis of the deduced amino acid sequence revealed a domain structure of the protein: a signal peptide that was 25 amino acids long was followed by a catalytic domain of about 300 amino acids, a fibronectin type III (Fn3) modul sequence, and a putative PHB-specific substrate-binding site. By comparison of the primary structure with that of other polyhydroxyalkanoate (PHA) depolymerases, the catalytic domain apparently contained a catalytic triad of serine, histidine, and aspartate. In addition, a conserved region resembling the oxyanion hole of lipases was present. The catalytic domain was linked to a C-terminal putative substrate-binding site by a sequence about 90 amino acids long resembling the Fn3 modul of fibronectin and other eukaryotic extracellular matrix proteins. A threonine-rich region, which was found in four of five PHA depolymerases of Pseudomonas lemoignei, was not present in the Comamonas sp. depolymerase. The similarities with and differences from other PHA depolymerases are discussed.Key words: biodegradable polymer, poly(3-hydroxybutyrate) depolymerase, serine hydrolase, catalytic triad, Comamonas sp., fibronectin type III modul, substrate-binding site.


2020 ◽  
Vol 21 (2) ◽  
pp. 117-130 ◽  
Author(s):  
Mohammad J. Hosen ◽  
Mahmudul Hasan ◽  
Sourav Chakraborty ◽  
Ruhshan A. Abir ◽  
Abdullah Zubaer ◽  
...  

Objectives: The Arterial Tortuosity Syndrome (ATS) is an autosomal recessive connective tissue disorder, mainly characterized by tortuosity and stenosis of the arteries with a propensity towards aneurysm formation and dissection. It is caused by mutations in the SLC2A10 gene that encodes the facilitative glucose transporter GLUT10. The molecules transported by and interacting with GLUT10 have still not been unambiguously identified. Hence, the study attempts to identify both the substrate binding site of GLUT10 and the molecules interacting with this site. Methods: As High-resolution X-ray crystallographic structure of GLUT10 was not available, 3D homology model of GLUT10 in open conformation was constructed. Further, molecular docking and bioinformatics investigation were employed. Results and Discussion: Blind docking of nine reported potential in vitro substrates with this 3D homology model revealed that substrate binding site is possibly made with PRO531, GLU507, GLU437, TRP432, ALA506, LEU519, LEU505, LEU433, GLN525, GLN510, LYS372, LYS373, SER520, SER124, SER533, SER504, SER436 amino acid residues. Virtual screening of all metabolites from the Human Serum Metabolome Database and muscle metabolites from Human Metabolite Database (HMDB) against the GLUT10 revealed possible substrates and interacting molecules for GLUT10, which were found to be involved directly or partially in ATS progression or different arterial disorders. Reported mutation screening revealed that a highly emergent point mutation (c. 1309G>A, p. Glu437Lys) is located in the predicted substrate binding site region. Conclusion: Virtual screening expands the possibility to explore more compounds that can interact with GLUT10 and may aid in understanding the mechanisms leading to ATS.


FEBS Letters ◽  
2006 ◽  
Vol 580 (3) ◽  
pp. 912-917 ◽  
Author(s):  
Jiro Arima ◽  
Yoshiko Uesugi ◽  
Misugi Uraji ◽  
Masaki Iwabuchi ◽  
Tadashi Hatanaka

Sign in / Sign up

Export Citation Format

Share Document