scholarly journals Integration of Aspergillus niger transcriptomic profile with metabolic model identifies potential targets to optimise citric acid production from lignocellulosic hydrolysate

2022 ◽  
Vol 15 (1) ◽  
Author(s):  
Daniel J. Upton ◽  
Mehak Kaushal ◽  
Caragh Whitehead ◽  
Laura Faas ◽  
Leonardo D. Gomez ◽  
...  

Abstract Background Citric acid is typically produced industrially by Aspergillus niger-mediated fermentation of a sucrose-based feedstock, such as molasses. The fungus Aspergillus niger has the potential to utilise lignocellulosic biomass, such as bagasse, for industrial-scale citric acid production, but realising this potential requires strain optimisation. Systems biology can accelerate strain engineering by systematic target identification, facilitated by methods for the integration of omics data into a high-quality metabolic model. In this work, we perform transcriptomic analysis to determine the temporal expression changes during fermentation of bagasse hydrolysate and develop an evolutionary algorithm to integrate the transcriptomic data with the available metabolic model to identify potential targets for strain engineering. Results The novel integrated procedure matures our understanding of suboptimal citric acid production and reveals potential targets for strain engineering, including targets consistent with the literature such as the up-regulation of citrate export and pyruvate carboxylase as well as novel targets such as the down-regulation of inorganic diphosphatase. Conclusions In this study, we demonstrate the production of citric acid from lignocellulosic hydrolysate and show how transcriptomic data across multiple timepoints can be coupled with evolutionary and metabolic modelling to identify potential targets for further engineering to maximise productivity from a chosen feedstock. The in silico strategies employed in this study can be applied to other biotechnological goals, assisting efforts to harness the potential of microorganisms for bio-based production of valuable chemicals.

1963 ◽  
Vol 30 (3) ◽  
pp. 365-379 ◽  
Author(s):  
N. F. MILLIS ◽  
B. H. TRUMPY ◽  
B. M. PALMER

1966 ◽  
Vol 12 (5) ◽  
pp. 901-907 ◽  
Author(s):  
H. Horitsu ◽  
D. S. Clark

Ferrocyanide at concentrations of less than 30 p.p.m. (the amount tolerated in citric acid fermentation of beet molasses) had no measurable effect on citric acid production or on the oxidation of glucose or Krebs cycle compounds by resting cells of Aspergillus niger or on the growth rate of this organism during submerged fermentation of beet molasses. Concentrations above 30 p.p.m., however, stimulated citric acid formation in resting cells, but markedly inhibited cell development in growing cells. This inhibition of growth was the main cause of the detrimental effect of high concentrations of ferrocyanide on citric acid formation in molasses; good growth throughout the fermentation was essential to high acid yield, inhibition of growth could be released at any time during the fermentation by addition of sufficient ZnSO4 to reduce the ferrocyanide content to below 30 p.p.m. No evidence that ferrocyanide favors citric acid accumulation by blocking a reaction in the Krebs cycle was found.


2018 ◽  
Vol 41 (7) ◽  
pp. 1029-1038 ◽  
Author(s):  
Xiaowen Sun ◽  
Hefang Wu ◽  
Genhai Zhao ◽  
Zhemin Li ◽  
Xihua Wu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document