scholarly journals Molecular detection of Anaplasma spp., Babesia spp. and Theileria spp. in yaks (Bos grunniens) and Tibetan sheep (Ovis aries) on the Qinghai-Tibetan Plateau, China

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Yongcai He ◽  
Wangkai Chen ◽  
Ping Ma ◽  
Yaoping Wei ◽  
Ruishan Li ◽  
...  

Abstract Background Anaplasma, Babesia and Theileria are tick-borne pathogens (TBPs) that affect livestock worldwide. However, information on these pathogens in yaks (Bos grunniens) and Tibetan sheep (Ovis aries) on the Qinghai-Tibet Plateau (QTP), China, is limited. In this study, Anaplasma spp., Babesia spp. and Theileria spp. infections were assessed in yaks and Tibetan sheep from Qinghai Province. Methods A total of 734 blood samples were collected from 425 yaks and 309 Tibetan sheep at nine sampling sites. Standard or nested polymerase chain reaction was employed to screen all the blood samples using species- or genus-specific primers. Results The results showed that 14.1% (60/425) of yaks and 79.9% (247/309) of Tibetan sheep were infected with at least one pathogen. Anaplasma ovis, Anaplasma bovis, Anaplasma capra, Anaplasma phagocytophilum, Babesia bovis and Theileria spp. were detected in this study, with total infection rates for all the assessed animals of 22.1% (162/734), 16.3% (120/734), 23.6% (173/734), 8.2% (60/734), 2.7% (20/734) and 19.3% (142/734), respectively. For yaks, the infection rate of A. bovis was 6.4% (27/425), that of B. bovis was 4.7% (20/425) and that of Theileria spp. was 3.3% (14/425). Moreover, 52.4% (162/309) of the Tibetan sheep samples were infected with A. ovis, 30.1% (93/309) with A. bovis, 56.0% (173/309) with A. capra, 19.4% (60/309) with A. phagocytophilum and 41.4% (128/309) with Theileria spp. Conclusions This study revealed the prevalence of Anaplasma spp., Babesia spp. and Theileria spp. in yaks and Tibetan sheep in Qinghai Province, China, and provides new data for a better understanding of the epidemiology of TBPs in these animals in this area of the QTP, China. Graphical Abstract

2021 ◽  
Vol 8 ◽  
Author(s):  
Ye Wang ◽  
Qingxun Zhang ◽  
Shuyi Han ◽  
Ying Li ◽  
Bo Wang ◽  
...  

Tick-borne diseases (TBDs) can cause serious economic losses and are very important to animal and public health. To date, research on TBDs has been limited in Qinghai-Tibet Plateau, China. This epidemiological investigation was conducted to evaluate the distribution and risk factors of Anaplasma spp. and Ehrlichia chaffeensis in livestock in Qinghai. A total of 566 blood samples, including 330 yaks (Bos grunniens) and 236 Tibetan sheep (Ovis aries) were screened. Results showed that A. bovis (33.3%, 110/330) and A. phagocytophilum (29.4%, 97/330) were most prevalent in yaks, followed by A. ovis (1.2%, 4/330), A. capra (0.6%, 2/330), and E. chaffeensis (0.6%, 2/330). While A. ovis (80.9%, 191/236) and A. bovis (5.1%, 12/236) infection was identified in Tibetan sheep. To our knowledge, it is the first time that A. capra and E. chaffeensis have been detected in yaks in China. Apart from that, we also found that co-infection of A. bovis and A. phagocytophilum is common in yaks (28.2%, 93/330). For triple co-infection, two yaks were infected with A. bovis, A. phagocytophilum, and A. capra, and two yaks were infected with A. bovis, A. phagocytophilum, and E. chaffeensis. Risk analysis shows that infection with A. bovis, A. phagocytophilum, and A. ovis was related to region and altitude. This study provides new data on the prevalence of Anaplasma spp. and E. chaffeensis in Qinghai, China, which may help to develop new strategies for active responding to these pathogens.


Animals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3529
Author(s):  
Weibing Lv ◽  
Xiu Liu ◽  
Yuzhu Sha ◽  
Hao Shi ◽  
Hong Wei ◽  
...  

As an important ruminant on the Qinghai-Tibet Plateau, Tibetan sheep can maintain their population reproduction rate in the harsh high-altitude environment of low temperature and low oxygen, which relies on their special plateau adaptations mechanism that they have formed for a long time. Microbiomes (known as “second genomes”) are closely related to the nutrient absorption, adaptability, and health of the host. In this study, rumen fermentation characteristics, the microbiota, and rumen epithelial gene expression of Tibetan sheep in various months were analyzed. The results show that the rumen fermentation characteristics of Tibetan sheep differed in different months. The total SCFAs (short-chain fatty acids), acetate, propionate, and butyrate concentrations were highest in October and lowest in June. The CL (cellulase) activity was highest in February, while the ACX (acid xylanase) activity was highest in April. In addition, the diversity and abundance of rumen microbes differed in different months. Bacteroidetes (53.4%) and Firmicutes (27.4%) were the dominant phyla. Prevotella_1 and Rikenellaceae_RC9_gut_group were the dominant genera. The abundance of Prevotella_1 was highest in June (27.8%) and lowest in December (17.8%). In addition, the expression of CLAUDIN4 (Claudin-4) and ZO1 (Zonula occludens 1) was significantly higher in April than in August and December, while the expression of SGLT1 (Sodium glucose linked transporter 1) was highest in August. Correlation analysis showed that there were interactions among rumen fermentation characteristics, the microbiota, and host gene expression, mainly by adjusting the amino acid metabolism pathway and energy metabolism pathway to improve energy utilization. At the same time, we adjusted the balance of the rumen “core microbiota” to promote the development of rumen and maintain the homeostasis of rumen environment, which makes Tibetan sheep better able to adapt to the harsh environment in different periods of the Qinghai-Tibet Plateau.


2019 ◽  
Vol 24 (1) ◽  
pp. 106
Author(s):  
Ningxin Li ◽  
Sisi Li ◽  
Duo Wang ◽  
Peng Yan ◽  
Wenying Wang ◽  
...  

The tick Dermacentor everestianus is widely distributed on the Tibetan Plateau of China, where adult ticks usually parasitize sheep, yaks and horses. D. everestianus is able to transmit many zoonotic pathogens, including Francisella tularensis, Anaplasma ovis and Rickettsia raoultii-like bacteria, and can cause great damage to animals and human health. However, the symbionts in D. everestianus have not yet been investigated, which has hindered our understanding of the relationships between this tick species and associated tick-borne pathogens. In the current study, the Rickettsia-like and Coxiella-like symbionts in D. everestianus were identified and characterized. The results indicated that both Rickettsia-like (RLS-Des) and Coxiella-like (CLS-Des) symbionts showed 100% infection rates and displayed vertical transmission in D. everestianus. The RLS-Des showed a relatively higher abundance than the CLS-Des in D. everestianus. No tissue specificity was found for the RLS-Des or CLS-Des. These symbionts can inhabit the ovaries, salivary glands, midguts, Malpighian tubules and testes of D. everestianus. During the development of D. everestianus, the density of the RLS-Des showed more obvious changes than did that of the CLS-Des. Dramatic changes in the density of the RLS-Des were detected in the midguts, ovaries, salivary glands and Malpighian tubules when female D. everestianus were engorged and detached from the host, which suggested the potential role of these symbionts in the reproduction and development of D. everestianus. The dynamic changes in the density of the CLS-Des during feeding and reproduction of D. everestianus suggest the involvement of the CLS-Des in the reproduction of D. everestianus. 


2017 ◽  
Vol 163 (3) ◽  
pp. 659-670 ◽  
Author(s):  
Meng Wang ◽  
Yun Wang ◽  
Abdul Rasheed Baloch ◽  
Yangyang Pan ◽  
Fang Xu ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Qingshan Fan ◽  
Xiongxiong Cui ◽  
Zhaofeng Wang ◽  
Shenghua Chang ◽  
Metha Wanapat ◽  
...  

The Qinghai-Tibet Plateau is characterized by low temperatures and hypoxia, and this feature is more obvious in the winter. However, it is not clear how Tibetan sheep adapt to extreme cold climates. To address this, we used physiological methods combined with next-generation sequencing technology to explore the differences in growth performance, forage nutrient digestion, serum biochemical indexes, and rumen microbial communities of Tibetan sheep (Ovis aries) between the summer and winter. In the summer, owing to the high nutritional quality of the forage, the Tibetan sheep showed enhanced forage degradation and fermentation though increased counts of important bacteria in the rumen, such as Bacteroidetes, Prevotella_1, Prevotellaceae_UCG-003, Ruminococcus_1, Saccharofermentans, and Ruminococcaceae_UCG-014, to improve the growth performance and increase serum immunity and antioxidant status. In the winter, owing to the low nutritional quality of the forage, the Tibetan sheep presented low values of forage degradation and fermentation indicators. The relative abundance of Firmicutes, the Firmicutes/Bacteroidetes ratio, microbial diversity, interactive activity between microorganisms, and metabolism were significantly increased, implying that the rumen microbiota could promote the decomposition of forage biomass and the maintenance of energy when forage nutritional value was insufficient in the winter. Our study helps in elucidating the mechanism by which Tibetan sheep adapt to the high-altitude harsh environments, from the perspective of the rumen microbiota.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Fenggui Liu ◽  
Guolong Zhu ◽  
Fawu Wang

AbstractThe joint event of 19th International Symposium on Geo-disaster Reduction (19ISGdR) and High-Level Academic Forum on Disaster Mitigation and Integrated Risk Defense on the Plateau was held on 11–15 July in Xining, Qinghai Province, China, focusing on the theme of “Geological disaster and integrated risk defense”. This event consisted of keynote lectures, invited lectures, and Youth forum, which provided a platform for scientists, industrial professionals and young scholars to share their research progress and exchange novel ideas on geo-disaster reduction in a hybrid way of offline and online. A post-symposium field trip for three days was also conducted in the joint area between Qinghai-Tibet plateau and Loess plateau.


2015 ◽  
Vol 61 (1) ◽  
pp. 21-27 ◽  
Author(s):  
Anatoly Bobrov ◽  
Vasiliy D. Kravchenko ◽  
Günter C. Müller

Tannins, which are polyphenols present in various plants, have anti-nutritional activity; however, their negative effects are mitigated by the presence of tannin-degrading microorganisms in the gastrointestinal tract of animals. This has never been investigated in the plateau zokor (Myospalax baileyi) – the predominant small herbivore in the alpine meadow ecosystem of Qinghai Province, China – which consumes tannin-rich herbaceous plants. Tannase activity in the feces of the plateau zokor increased from June to August corresponding to the increase in hydrolyzable tannin concentrations in plants during this period, and three tannin-degrading facultative anaerobic strains (designated as E1, E2, and E3) were isolated from the cecum of these animals. Sequencing of the 16S rDNA gene identified isolates of strain E1 as belonging to the genusEnterococcus, and E2 and E3 to the genusBacillus. All of the bacteria had cellulose-degrading capacity. This study provides the first evidence of symbiotic bacterial strains that degrade tannic acid and cellulose in the cecum of plateau zokor.


Sign in / Sign up

Export Citation Format

Share Document