scholarly journals Ivermectin as an endectocide may boost control of malaria vectors in India and contribute to elimination

2022 ◽  
Vol 15 (1) ◽  
Author(s):  
Sundus Shafat Ahmad ◽  
Manju Rahi ◽  
Poonam Saroha ◽  
Amit Sharma

AbstractMalaria constitutes one of the largest public health burdens faced by humanity. Malaria control has to be an efficient balance between diagnosis, treatment and vector control strategies. The World Health Organization currently recommends indoor residual spraying and impregnated bed nets as two malaria vector control methods that have shown robust and persistent results against endophilic and anthropophilic mosquito species. The Indian government launched the National Framework for Malaria Elimination in 2016 with the aim to achieve the elimination of malaria in a phased and strategic manner and to sustain a nation-wide malaria-free status by 2030. India is currently in a crucial phase of malaria elimination and novel vector control strategies maybe helpful in dealing with various challenges, such as vector behavioural adaptations and increasing insecticide resistance among the Anopheles populations of India. Ivermectin can be one such new tool as it is the first endectocide to be approved in both animals and humans. Trials of ivermectin have been conducted in endemic areas of Africa with promising results. In this review, we assess available data on ivermectin as an endectocide and propose that this endectocide should be explored as a vector control tool for malaria in India. Graphical Abstract

2019 ◽  
Author(s):  
D.D Soma ◽  
B Zogo ◽  
P Taconet ◽  
A Somé ◽  
S Coulibaly ◽  
...  

AbstractBackgroundTo sustain the efficacy of malaria vector control, the World Health Organization (WHO) recommends the combination of effective tools. Before designing and implementing additional strategies in any setting, it is critical to monitor or predict when and where transmission occurs. However, to date, very few studies have quantified the behavioural interactions between humans and Anopheles vectors. Here, we characterized residual transmission in a rural area of Burkina Faso where long lasting insecticidal nets (LLIN) are widely used.MethodsWe analysed data on both human and malaria vectors behaviours from 27 villages to measure hourly human exposure to vector bites in dry and rainy seasons using mathematical models. We estimated the protective efficacy of LLINs and characterised where (indoors vs. outdoors) and when both LLIN users and non-users were exposed to vector bites.ResultsThe percentage of the population who declared sleeping under a LLIN the previous night was very high regardless of the season, with an average LLIN use ranging from 92.43% to 99.89%. The use of LLIN provided > 80% protection against exposure to vector bites. The proportion of exposure for LLIN users was 29-57% after 05:00 and 0.05-12 % before 20:00. More than 80% of exposure occurred indoors for LLIN users and the estimate reached 90% for children under five years old in the dry cold season.ConclusionsThis study supports the current use of LLIN as a primary malaria vector control tool. It also emphasises the need to complement LLIN with indoor-implemented measures such as indoor residual spraying (IRS) and/or house improvement to effectively combat malaria in the rural area of Diébougou. Furthermore, malaria elimination programmes would also require strategies that target outdoor biting vectors to be successful in the area.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Henry Ddumba Mawejje ◽  
Maxwell Kilama ◽  
Simon P. Kigozi ◽  
Alex K. Musiime ◽  
Moses Kamya ◽  
...  

Abstract Background Long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) are the malaria control interventions primarily responsible for reductions in transmission intensity across sub-Saharan Africa. These interventions, however, may have differential impact on Anopheles species composition and density. This study examined the changing pattern of Anopheles species in three areas of Uganda with markedly different transmission intensities and different levels of vector control. Methods From October 2011 to June 2016 mosquitoes were collected monthly using CDC light traps from 100 randomly selected households in three areas: Walukuba (low transmission), Kihihi (moderate transmission) and Nagongera (high transmission). LLINs were distributed in November 2013 in Walukuba and Nagongera and in June 2014 in Kihihi. IRS was implemented only in Nagongera, with three rounds of bendiocarb delivered between December 2014 and June 2015. Mosquito species were identified morphologically and by PCR (Polymerase Chain Reaction). Results In Walukuba, LLIN distribution was associated with a decline in Anopheles funestus vector density (0.07 vs 0.02 mosquitoes per house per night, density ratio [DR] 0.34, 95% CI: 0.18–0.65, p = 0.001), but not Anopheles gambiae sensu stricto (s.s.) nor Anopheles arabiensis. In Kihihi, over 98% of mosquitoes were An. gambiae s.s. and LLIN distribution was associated with a decline in An. gambiae s.s. vector density (4.00 vs 2.46, DR 0.68, 95% CI: 0.49–0.94, p = 0.02). In Nagongera, the combination of LLINs and multiple rounds of IRS was associated with almost complete elimination of An. gambiae s.s. (28.0 vs 0.17, DR 0.004, 95% CI: 0.002–0.009, p < 0.001), and An. funestus sensu lato (s.l.) (3.90 vs 0.006, DR 0.001, 95% CI: 0.0005–0.004, p < 0.001), with a less pronounced decline in An. arabiensis (9.18 vs 2.00, DR 0.15 95% CI: 0.07–0.33, p < 0.001). Conclusions LLIN distribution was associated with reductions in An. funestus s.l. in the lowest transmission site and An. gambiae s.s. in the moderate transmission site. In the highest transmission site, a combination of LLINs and multiple rounds of IRS was associated with the near collapse of An. gambiae s.s. and An. funestus s.l. Following IRS, An. arabiensis, a behaviourally resilient vector, became the predominant species, which may have implications for malaria vector control activities. Development of interventions targeted at outdoor biting remains a priority.


2021 ◽  
Author(s):  
Abebe Asale ◽  
Zewdu Abro ◽  
Bayu Enchalew ◽  
Alayu Tesager ◽  
Aklilu Belay ◽  
...  

Abstract Background: Key program components of malaria control in Ethiopia include community empowerment and mobilization, vector control using long-lasting insecticidal nets (LLINs), indoor residual spraying (IRS), prompt diagnosis and treatment, and disease surveillance. However, the effectiveness of these interventions is often undermined by various challenges, including insecticide and drug resistance, the plasticity of malaria vectors feeding and biting behavior, and certain household factors that lead to misuse and poor utilization of LLINs. The primary objective of this study was to document households’ perceptions towards malaria and assess the prevalence of the disease and the constraints related to the ongoing interventions in Ethiopia (LLINs, IRS, community mobilization house screening). Method: The study was conducted in Jabi Tehnan district, Northwestern Ethiopi,a from November 2019 to March 2020. A total of 3,010 households distributed over 38 kebeles (villages) were randomly selected for socio-economic and demographic survey. Focus group discussions (FGDs) were conducted in 11 different health clusters taking into account agro-ecological differences. A total of 1,256 children under 10 years of age were screened for malaria parasites using microscopy in order to determine malaria prevalence. Furthermore, five-year malaria trend analysis was undertaken based on data obtained from the district health office to understand the disease dynamics.Result: Malaria knowledge in the area was high as all FGD participants correctly identified mosquito bites during the night as sources of malaria transmission. Delayed health seeking behavior remains a key behavioral challenge in malaria control as it took patients on average 4 days before reporting the case at the nearby health facility. On average households lost 2.53 working days per person-per malaria episode and theey spent US$ 18 per person perepisode. Out of the 1,256 randomly selected under 10 children tested for malaria parasites, 11 (0.89%) were found to be positive. Malaria disproportionately affected the adult segment of the population more, 50% of the total cases reported from households whose age was 15 and beyond. The second most affected group was the age group between 5 and 14 years followed by children under 10, with 31% and 14% burden,respectively.Conclusion: Despite the achievement of universal coverage in terms of LLINs access, utilization of vector control interventions in the area remained low.Using bed nets for unintended purposes remained a major challenge. Therefore, continued community education and communication work should be prioritised in the study area to bring about the desired behavioral changes.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0248604
Author(s):  
Helena Marti-Soler ◽  
Mara Máquina ◽  
Mercy Opiyo ◽  
Celso Alafo ◽  
Ellie Sherrard-Smith ◽  
...  

Indoor residual spraying (IRS) is one of the main malaria vector control strategies in Mozambique alongside the distribution of insecticide treated nets. As part of the national insecticide resistance management strategy, Mozambique introduced SumiShield™ 50WG, a third generation IRS product, in 2018. Its residual efficacy was assessed in southern Mozambique during the 2018–2019 malaria season. Using a susceptible Anopheles arabiensis strain, residual efficacy was assessed on two different wall surfaces, cement and mud-plastered walls, using standard WHO (World Health Organization) cone bioassay tests at three different heights. Female mosquitoes of two age groups (2–5 and 13–26 day old) were exposed for 30 minutes, after which mortality was observed 24h, 48h, 72h, and 96h and 120h post-exposure to assess (delayed) mortality. Lethal times (LT) 90, LT50 and LT10 were estimated using Bayesian models. Mortality 24h post exposure was consistently below 80%, the current WHO threshold value for effective IRS, in both young and old mosquitoes, regardless of wall surface type. Considering delayed mortality, residual efficacies (mosquito mortality equal or greater than 80%) ranged from 1.5 to ≥12.5 months, with the duration depending on mortality time post exposure, wall type and mosquito age. Looking at mortality 72h after exposure, residual efficacy was between 6.5 and 9.5 months, depending on wall type and mosquito age. The LT50 and LT10 (i.e. 90% of the mosquitoes survive exposure to the insecticides) values were consistently higher for older mosquitoes (except for LT10 values for 48h and 72h post-exposure mortality) and ranged from 0.9 to 5.8 months and 0.2 to 7.8 months for LT50 and LT10, respectively. The present study highlights the need for assessing mosquito mortality beyond the currently recommended 24h post exposure. Failure to do so may lead to underestimation of the residual efficacy of IRS products, as delayed mortality will lead to a further reduction in mosquito vector populations and potentially negatively impact disease transmission. Monitoring residual efficacy on relevant wall surfaces, including old mosquitoes that are ultimately responsible for malaria transmission, and assessing delayed mortalities are critical to provide accurate and actionable data to guide vector control programmes.


2020 ◽  
Author(s):  
Corine Ngufor ◽  
Renaud Govoetchan ◽  
Augustin Fongnikin ◽  
Estelle Vigninou ◽  
Thomas Syme ◽  
...  

AbstractThe rotational use of insecticides with different modes of action for indoor residual spraying (IRS) is recommended for improving malaria vector control and managing insecticide resistance. A more diversified portfolio of IRS insecticides is required; insecticides with new chemistries which can provide improved and prolonged control of insecticide-resistant vector populations are urgently needed. Broflanilide is a newly discovered insecticide being considered for malaria vector control. We investigated the efficacy of a wettable powder (WP) formulation of broflanilide (VECTRON™ T500) for IRS on mud and cement wall substrates in WHO laboratory and experimental hut studies against pyrethroid-resistant malaria vectors in Benin, in comparison with pirimiphos-methyl CS (Actellic® 300CS). There was no evidence of cross-resistance to pyrethroids and broflanilide in CDC bottle bioassays. In laboratory cone bioassays, mortality of susceptible and pyrethroid-resistant A. gambiae s.l. with broflanilide WP treated substrates was >80% for 6-14 months. At application rates of 100mg/m2 and 150 mg/m2, mortality of wild pyrethroid-resistant A. gambiae s.l. entering treated experimental huts in Covè, Benin was 57%-66% with broflanilide WP and did not differ significantly from pirimiphos-methyl CS (57-66% vs. 56%, P>0.05). Mosquito mortality did not differ between the two application rates and local wall substrate-types tested (P>0.05). Throughout the 6-month hut trial, monthly wall cone bioassay mortality on broflanilide WP treated hut walls remained >80% for both susceptible and resistant strains of A. gambiae s.l.. Broflanilide shows potential to significantly improve the control of malaria transmitted by pyrethroid-resistant mosquito vectors and would thus be a crucial addition to the current portfolio of IRS insecticides.One Sentence SummaryVECTRON™ T500, a new wettable powder formulation of broflanilide developed for indoor residual spraying, showed high and prolonged activity against wild pyrethroid-resistant malaria vectors, on local wall substrates, in laboratory bioassays and experimental household settings in Benin.


2022 ◽  
Vol 2022 ◽  
pp. 1-8
Author(s):  
Ashok K. Mishra ◽  
Praveen K Bharti ◽  
Gyan Chand ◽  
Aparup Das ◽  
Himanshu Jayswar ◽  
...  

Background. Indoor residual spraying (IRS) and long-lasting insecticidal nets (LLINs) are malaria vector control measures used in India, but the development of insecticide resistance poses major impediments for effective vector control strategies. As per the guidelines of the National Vector Borne Disease Control Programme (NVBDCP), the study was conducted in 12 districts of Madhya Pradesh to generate data on insecticide resistance in malaria vectors. Methods. The susceptibility tests were conducted on adult An. culicifacies as per the WHO standard technique with wild-caught mosquitoes. The blood-fed female mosquitoes were exposed in 3 to 4 replicates on each occasion to the impregnated papers with specified discriminating dosages of the insecticides (DDT: 4%, malathion: 5%, deltamethrin: 0.05%, and alphacypermethrin: 0.05%), for one hour, and mortality was recorded after 24-hour holding. Results. An. culicifacies was found resistant to DDT 4% in all the 12 districts and malathion in 11 districts. The resistance to alphacypermethrin was also observed in two districts, and possible resistance was found to alphacypermethrin in seven districts and to deltamethrin in eight districts, while the vector was found susceptible to both deltamethrin and alphacypermethrin in only 3 districts. Conclusion. An. culicifacies is resistant to DDT and malathion and has emerging resistance to pyrethroids, alphacypermethrin, and deltamethrin. Therefore, regular monitoring of insecticide susceptibility in malaria vectors is needed for implementing effective vector management strategies. However, studies to verify the impact of IRS with good coverage on the transmission of disease are required before deciding on the change of insecticide in conjunction with epidemiological data.


2020 ◽  
Author(s):  
El hadji Diouf ◽  
El hadji Amadou Niang ◽  
Badara Samb ◽  
Cheikh Tidiane Diagne ◽  
Mbaye Diouf ◽  
...  

Abstract Background: Malaria prevention strategies are based on the use of long-lasting insecticide-treated mosquito nets (LLINs), indoor residual spraying of insecticides (IRS) and seasonal malaria chemoprevention (SMC). The combination of these strategies with artemisinin-based combination therapy (ACTs) has led to a significant reduction in malaria cases. However, malaria remains a major public health issue in most sub-Saharan African countries. Indeed, the resistance of vectors to most WHO-approved insecticides could jeopardize vector-control strategies. This study examines insecticide resistance and associated genetic mutations among malaria vectors in southeast Senegal. Methods: The study was conducted in October and November 2014 in two sites in southeast Senegal. An. gambiae s.l. populations were sampled from Kedougou (Kedougou district) and Wassadou-Badi (Tambacounda district) and were evaluated for insecticide resistance according to WHO susceptibility tests. Specimens were 3 to 5-day-old adults raised from collected larvae. Eleven insecticides belonging to the four known classes of insecticides were assessed. Mosquito species were identified and mutations associated with insecticide resistance (ace-1, rdl (A296S or A296G), Vgsc-1014F and Vgsc-1014S) were determined. Results: A total of 3,742 An. gambiae s.l. were exposed to insecticides (2,439 from Kedougou and 1,303 from Wassadou-Badi). In both sites, mosquitoes showed high levels of resistance to all the five pyrethroids tested (mortality rates ranged from 42.8 to 81.4% in Kedougou and 52.4 to 86.4% in Wassadou-Badi) as well as to dieldrin (67.8 and 83%) and DDT (12.7 and 55%). The mosquitoes were susceptible to pirimiphos-methyl (mortality rate 100%) and malathion (mortality rates 100% and 99% in Kedougou and Wassadou-Badi respectively). An. gambiae s.l. populations from Kedougou were also resistant to bendiocarb and fenitrothion. Of the 745 An. gambiae s.l. genotyped An. gambiae s.s. (71.6%) was the predominant species, followed by An. arabiensis (21.7%), An. coluzzii (6.3%) and hybrids (An. gambiae s.s./An. coluzzii; 0.4%). The Vgsc-1014F mutation was widely distributed and is predominant in An. gambiae s.s. and An. coluzzii in comparison to An. arabiensis. Vgsc-1014S was present in An. gambiae s.l. populations in Wassadou but not in Kedougou. The ace-1 and rdl mutations were more frequent in An. gambiae s.s. compared to An. arabiensis whereas they were detected weakly in An. coluzzii populations.Conclusions: The present study demonstrates the resistance of malaria vectors to pyrethroids and organo chlorines in southeast Senegal as well as the presence of genetic mutations associated with this resistance in An. gambiae s.l. No Vgsc-1014S mutation was detected in An. gambiae s.s. population in Kedougou. These findings are key for monitoring and managing the resistance of vectors to insecticides in this region.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Moussa Keïta ◽  
Sidy Doumbia ◽  
Ibrahim Sissoko ◽  
Mahamoudou Touré ◽  
Sory Ibrahim Diawara ◽  
...  

Abstract Background Implementation and upscale of effective malaria vector control strategies necessitates understanding the multi-factorial aspects of transmission patterns. The primary aims of this study are to determine the vector composition, biting rates, trophic preference, and the overall importance of distinguishing outdoor versus indoor malaria transmission through a study at two communities in rural Mali. Methods Mosquito collection was carried out between July 2012 and June 2016 at two rural Mali communities (Dangassa and Koïla Bamanan) using pyrethrum spray-catch and human landing catch approaches at both indoor and outdoor locations. Species of Anopheles gambiae complex were identified by polymerase chain reaction (PCR). Enzyme-Linked -Immuno-Sorbent Assay (ELISA) were used to determine the origin of mosquito blood meals and presence of Plasmodium falciparum sporozoite infections. Results A total of 11,237 An. gambiae sensu lato (s.l.) were collected during the study period (5239 and 5998 from the Dangassa and Koïla Bamanan sites, respectively). Of the 679 identified by PCR in Dangassa, Anopheles coluzzii was the predominant species with 91.4% of the catch followed by An. gambiae (8.0%) and Anopheles arabiensis (0.6%). At the same time in Koïla Bamanan, of the 623 An. gambiae s.l., An. coluzzii accounted for 99% of the catch, An. arabiensis 0.8% and An. gambiae 0.2%. Human Blood Index (HBI) measures were significantly higher in Dangassa (79.4%; 95% Bayesian credible interval (BCI) [77.4, 81.4]) than in Koïla Bamanan (15.9%; 95% BCI [14.7, 17.1]). The human biting rates were higher during the second half of the night at both sites. In Dangassa, the sporozoite rate was comparable between outdoor and indoor mosquito collections. For outdoor collections, the sporozoite positive rate was 3.6% (95% BCI [2.1–4.3]) and indoor collections were 3.1% (95% BCI [2.4–5.0]). In Koïla Bamanan, the sporozoite rate was higher indoors at 4.3% (95% BCI [2.7–6.3]) compared with outdoors at 2.4% (95% BCI [1.1–4.2]). In Dangassa, corrected entomological inoculation rates (cEIRs) using HBI were 13.74 [95% BCI 9.21–19.14] infective bites/person/month (ib/p/m) at indoor, and 18.66 [95% BCI 12.55–25.81] ib/p/m at outdoor. For Koïla Bamanan, cEIRs were 1.57 [95% BCI 2.34–2.72] ib/p/m and 0.94 [95% BCI 0.43–1.64] ib/p/m for indoor and outdoor, respectively. EIRs were significantly higher at the Dangassa site than the Koïla Bamanan site. Conclusion The findings in this work may indicate the occurrence of active, outdoor residual malaria transmission is comparable to indoor transmission in some geographic settings. The high outdoor transmission patterns observed here highlight the need for additional strategies to combat outdoor malaria transmission to complement traditional indoor preventive approaches such as long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) which typically focus on resting mosquitoes.


Author(s):  
M. Y. Korti ◽  
T. B. Ageep ◽  
A. I. Adam ◽  
K. B. Shitta ◽  
A. A. Hassan ◽  
...  

Abstract Background Chemical control has been the most efficient method in mosquito control, the development of insecticide resistance in target populations has a significant impact on vector control. The use of agricultural pesticides may have a profound impact on the development of resistance in the field populations of malaria vectors. Our study focused on insecticide resistance and knockdown resistance (kdr) of Anopheles arabiensis populations from Northern Sudan, related to agricultural pesticide usage. Results Anopheles arabiensis from urban and rural localities (Merowe and Al-hamadab) were fully susceptible to bendiocarb 0.1% and permethrin 0.75% insecticides while resistant to DDT 4% and malathion 5%. The population of laboratory reference colony F189 from Dongola showed a mortality of 91% to DDT (4%) and fully susceptible to others. GLM analysis indicated that insecticides, sites, site type, and their interaction were determinant factors on mortality rates (P < 0.01). Except for malathion, mortality rates of all insecticides were not significant (P > 0.05) according to sites. Mortality rates of malathion and DDT were varied significantly (P < 0.0001 and P < 0.05 respectively) by site types, while mortality rates of bendiocarb and permethrin were not significant (P >0.05). The West African kdr mutation (L1014F) was found in urban and rural sites. Even though, the low-moderate frequency of kdr (L1014F) mutation was observed. The findings presented here for An. arabiensis showed no correlation between the resistant phenotype as ascertained by bioassay and the presence of the kdr mutation, with all individuals tested except the Merowe site which showed a moderate association with DDT (OR= 6 in allelic test), suggesting that kdr genotype would be a poor indicator of phenotypic resistance. Conclusion The results provide critical pieces of information regarding the insecticide susceptibility status of An. arabiensis in northern Sudan. The usage of the same pesticides in agricultural areas seemed to affect the Anopheles susceptibility when they are exposed to those insecticides in the field. The kdr mutation might have a less role than normally expected in pyrethroids resistance; however, other resistance genes should be in focus. These pieces of information will help to improve the surveillance system and The implication of different vector control programs employing any of these insecticides either in the treatment of bed nets or for indoor residual spraying would achieve satisfactory success rates.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Elodie Ekoka ◽  
Surina Maharaj ◽  
Luisa Nardini ◽  
Yael Dahan-Moss ◽  
Lizette L. Koekemoer

AbstractWith the rapid development and spread of resistance to insecticides among anopheline malaria vectors, the efficacy of current World Health Organization (WHO)-approved insecticides targeting these vectors is under threat. This has led to the development of novel interventions, including improved and enhanced insecticide formulations with new targets or synergists or with added sterilants and/or antimalarials, among others. To date, several studies in mosquitoes have revealed that the 20-hydroxyecdysone (20E) signaling pathway regulates both vector abundance and competence, two parameters that influence malaria transmission. Therefore, insecticides which target 20E signaling (e.g. methoxyfenozide and halofenozide) may be an asset for malaria vector control. While such insecticides are already commercially available for lepidopteran and coleopteran pests, they still need to be approved by the WHO for malaria vector control programs. Until recently, chemicals targeting 20E signaling were considered to be insect growth regulators, and their effect was mostly studied against immature mosquito stages. However, in the last few years, promising results have been obtained by applying methoxyfenozide or halofenozide (two compounds that boost 20E signaling) to Anopheles populations at different phases of their life-cycle. In addition, preliminary studies suggest that methoxyfenozide resistance is unstable, causing the insects substantial fitness costs, thereby potentially circumventing one of the biggest challenges faced by current vector control efforts. In this review, we first describe the 20E signaling pathway in mosquitoes and then summarize the mechanisms whereby 20E signaling regulates the physiological processes associated with vector competence and vector abundance. Finally, we discuss the potential of using chemicals targeting 20E signaling to control malaria vectors.


Sign in / Sign up

Export Citation Format

Share Document