scholarly journals LncRNA KCNQ1OT1 promotes the development of diabetic nephropathy by regulating miR-93-5p/ROCK2 axis

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Li Zhao ◽  
Huaqian Chen ◽  
Lin Wu ◽  
Zhengdong Li ◽  
Ren Zhang ◽  
...  

Abstract Background Long non-coding RNAs (lncRNAs) have been reported to play vital roles in diabetic nephropathy (DN). The aim of this study was to explore the function of mechanism of lncRNA KCNQ1 opposite strand/antisense transcript 1 (KCNQ1OT1) in DN. Methods DN cell models were established using high glucose (HG) treatment in human glomerular mesangial cells (HGMC) and human renal glomerular endothelial cells (HRGEC). The expression levels of KCNQ1OT1, microRNA-93-5p (miR-93-5p), and Rho associated coiled-coil containing protein kinase 2 (ROCK2) mRNA was detected by quantitative real-time polymerase chain reaction (qRT-PCR). Cell Counting Kit-8 (CCK-8) assay and flow cytometry were used to detect cell proliferation and apoptosis, respectively. ROCK2 and apoptosis/fibrosis-related protein levels were examined by western blot. The predicted interaction between miR-93-5p and KCNQ1OT1 or ROCK2 was verified by dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. Results KCNQ1OT1 was upregulated in DN patients and DN cell models. KCNQ1OT1 knockdown inhibited cell proliferation and fibrosis and induced apoptosis in DN cell models. MiR-93-5p was a direct target of KCNQ1OT1, and miR-93-5p inhibition restored the KCNQ1OT1 knockdown-mediated effects on cell proliferation, fibrosis and apoptosis in DN cell models. In addition, ROCK2 was identified as a target of miR-93-5p, and miR-93-5p overexpression suppressed cell proliferation and fibrosis and accelerated apoptosis by targeting ROCK2 in DN cell models. Moreover, KCNQ1OT1 regulated ROCK2 expression by binding to miR-93-5p. Conclusion KCNQ1OT1 knockdown inhibited cell proliferation and fibrosis and induced apoptosis in DN by regulating miR-93-5p/ROCK2 axis, providing potential value for the treatment of DN.

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Le Zhang ◽  
Qian Dai ◽  
Lanlan Hu ◽  
Hua Yu ◽  
Jing Qiu ◽  
...  

Purpose. Hyperoside, a flavonoid isolated from conventional medicinal herbs, has been demonstrated to exert a significant protective effect in diabetic nephropathy. This study aimed to determine the underlying mechanisms, by which hyperoside inhibits high glucose-(HG-) induced proliferation in mouse renal mesangial cells. Methods. Mouse glomerular mesangial cells line (SV40-MES13) was used to study the inhibitory effect of hyperoside on cell proliferation induced by 30 mM glucose, which was used to simulate a diabetic condition. Viable cell count was assessed using the Cell Counting Kit-8 and by the 5-ethynyl-20-deoxyuridine incorporation assay. The underlying mechanism involving miRNA-34a was further investigated by quantitative RT-PCR and transfection with miRNA-34a agomir. The phosphorylation levels of extracellular signal-regulated kinases (ERKs) and cAMP-response element-binding protein (CREB) were measured by Western blotting. The binding region and the critical binding sites of CREB in the miRNA-34a promoter were investigated by the chromatin immunoprecipitation assay and luciferase reporter assay, respectively. Results. We found that hyperoside could significantly decrease HG-induced proliferation of SV40-MES13 cells in a dose-dependent manner, without causing obvious cell death. In addition, hyperoside inhibited the activation of ERK pathway and phosphorylation of its downstream transcriptional factor CREB, as well as the miRNA-34a expression. We further confirmed that CREB-mediated regulation of miRNA-34a is dependent on the direct binding to specific sites in the promoter region of miRNA-34a. Conclusion. Our cumulative results suggested that hyperoside inhibits the proliferation of SV40-MES13 cells through the suppression of the ERK/CREB/miRNA-34a signaling pathway, which provides new insight to the current investigation on therapeutic strategies for diabetic nephropathy.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Jie Yun ◽  
Jinyu Ren ◽  
Yufei Liu ◽  
Lijuan Dai ◽  
Liqun Song ◽  
...  

Abstract Background Circular RNAs (circRNAs) have been considered as pivotal biomarkers in Diabetic nephropathy (DN). CircRNA ARP2 actin-related protein 2 homolog (circ-ACTR2) could promote the HG-induced cell injury in DN. However, how circ-ACTR2 acts in DN is still unclear. This study aimed to explore the molecular mechanism of circ-ACTR2 in DN progression, intending to provide support for the diagnostic and therapeutic potentials of circ-ACTR2 in DN. Methods RNA expression analysis was conducted by the quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Cell growth was measured via Cell Counting Kit-8 and EdU assays. Inflammatory response was assessed by Enzyme-linked immunosorbent assay. The protein detection was performed via western blot. Oxidative stress was evaluated by the commercial kits. The molecular interaction was affirmed through dual-luciferase reporter and RNA immunoprecipitation assays. Results Circ-ACTR2 level was upregulated in DN samples and high glucose (HG)-treated human renal mesangial cells (HRMCs). Silencing the circ-ACTR2 expression partly abolished the HG-induced cell proliferation, inflammation and extracellular matrix accumulation and oxidative stress in HRMCs. Circ-ACTR2 was confirmed as a sponge for miR-205-5p. Circ-ACTR2 regulated the effects of HG on HRMCs by targeting miR-205-5p. MiR-205-5p directly targeted high-mobility group AT-hook 2 (HMGA2), and HMGA2 downregulation also protected against cell injury in HG-treated HRMCs. HG-mediated cell dysfunction was repressed by miR-205-5p/HMGA2 axis. Moreover, circ-ACTR2 increased the expression of HMGA2 through the sponge effect on miR-205-5p in HG-treated HRMCs. Conclusion All data have manifested that circ-ACTR2 contributed to the HG-induced DN progression in HRMCs by the mediation of miR-205-5p/HMGA2 axis.


2020 ◽  
Vol 15 (1) ◽  
pp. 274-283
Author(s):  
Bo Zheng ◽  
Tao Chen

AbstractAmong astrocyte tumors, glioblastoma (GBM) is the most malignant glioma, highly aggressive and invasive, with extremely poor prognosis. Previous research has reported that microRNAs (miRNAs) participate in the progression of many cancers. Thus, this study aimed to explore the role and the underlying mechanisms of microRNA (miR)-489-3p in GBM progression. The expression of miR-489-3p and brain-derived neurotrophic factor (BDNF) mRNA was measured by quantitative real-time polymerase chain reaction. Western blot analysis was used to detect BDNF protein and the PI3K/AKT pathway-related protein. Cell proliferation, apoptosis, migration, and invasion were analyzed using CKK-8 assay, flow cytometry, and transwell assay, respectively. The interaction between BDNF and miR-489-3p was explored by luciferase reporter assay and RNA immunoprecipitation (RIP) assay. MiR-489-3p was down-regulated and BDNF was up-regulated in GBM tissues and cells. MiR-489-3p re-expression or BDNF knockdown inhibited GBM cell proliferation, migration, and invasion, and promoted apoptosis. BDNF was a target of miR-489-3p, and BDNF up-regulation reversed the effects of miR-489-3p on GBM cells. The protein levels of p-AKT and p-PI3K were notably reduced in GBM cells by overexpression of miR-489-3p, but were rescued following BDNF up-regulation. Therefore, miR-489-3p inhibited proliferation, migration, and invasion, and induced apoptosis, by targeting the BDNF-mediated PI3K/AKT pathway in GBM, providing new strategies for clinical treatment of GBM.


2020 ◽  
Vol 45 (4) ◽  
pp. 589-602 ◽  
Author(s):  
Jin-Feng Zhan ◽  
Hong-Wei Huang ◽  
Chong Huang ◽  
Li-Li Hu ◽  
Wen-Wei Xu

Introduction: Diabetic nephropathy (DN) is a serious complication of diabetes mellitus and is considered to be a sterile inflammatory disease. Increasing evidence suggest that pyroptosis and subsequent inflammatory response play a key role in the pathogenesis of DN. However, the underlying cellular and molecular mechanisms responsible for pyroptosis in DN are largely unknown. Methods: The rat models of DN were successfully established by single 65 mg/kg streptozotocin treatment. Glomerular mesangial cells were exposed to 30 mmol/L high glucose media for 48 h to mimic the DN environment in vitro. Gene and protein expressions were determined by quantitative real-time PCR and Western blot. Cell viability and pyroptosis were measured by MTT assay and flow cytometry analysis, respectively. The relationship between lncRNA NEAT1, miR-34c, and Nod-like receptor protein-3 (NLRP3) was confirmed by luciferase reporter assay. Results: We found that upregulation of NEAT1 was associated with the increase of pyroptosis in DN models. miR-34c, as a target gene of NEAT1, mediated the effect of NEAT1 on pyroptosis in DN by regulating the expression of NLRP3 as well as the expressions of caspase-1 and interleukin-1β. Either miR-34c inhibition or NLRP3 overexpression could reverse the accentuation of pyroptosis and inflammation by sh-NEAT1 transfection in the in vitro model of DN. Conclusions: Our findings suggested NEAT1 and its target gene miR-34c regulated cell pyroptosis via mediating NLRP3 in DN, providing new insights into understanding the molecular mechanisms of pyroptosis in the pathogenesis of DN.


2020 ◽  
Author(s):  
Xiaoyu Zhang ◽  
Yingying Xu ◽  
Kenji Yamaguchi ◽  
Jinping Hu ◽  
Lianbo Zhang ◽  
...  

Abstract Background A keloid is a benign human skin tumor that resulted by fibrous overgrowths during wound healing. Long noncoding RNAs (lncRNAs) are indicated to involve in the development of keloid. However, the role of lncRNA LINC01615 in regulating keloid development and the underlying mechanism are still unknown. Methods The expression levels of LINC01615, miR-590-3p and fibroblast growth factor 2 (FGF2) mRNA were detected by quantitative real-time polymerase chain reaction (qRT-PCR). The protein levels of apoptosis-related proteins, α-smooth muscle actin (α-SMA), collagens and FGF2 were measured by western blot. The effect of LINC01615 on keloid development was assessed by cell proliferation, apoptosis and collagen deposition of keloid fibroblasts which were determined by Cell Counting Kit-8 (CCK-8), flow cytometry assay and the protein levels of collagens, respectively. The relationships between LINC01615 and miR-590-3p, miR-590-3p and FGF2 were predicated by online software and confirmed by dual-luciferase reporter assay and RNA pull-down assay. Results We first found that LINC01615 was upregulated in keloid tissues and fibroblasts, and LINC01615 promoted cell proliferation and collagen deposition and suppressed apoptosis in keloid fibroblasts. LINC01615 targeted miR-590-3p and downregulated miR-590-3p expression, and overexpression of miR-590-3p inhibited the development of keloid. Then, FGF2 was identified as a target of miR-590-3p. LINC01615 facilitated keloid development via regulating FGF2 expression through miR-590-3p. Conclusion Our study demonstrated that LINC01615 contributed to keloid development via the miR-590-3p/FGF2 axis.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Dongju Zhu ◽  
Xiang Wu ◽  
Qian Xue

Abstract Background Diabetic nephropathy (DN) is a common complication of diabetes. Long non-coding RNA (lncRNA) cancer susceptibility candidate 2 (CASC2) is reported to exert a protective role in DN by a previous study. The working mechanism underlying the protective role of CASC2 in DN progression was further explored in this study. Methods The expression of CASC2 and microRNA-135a-5p (miR-135a-5p) was determined by real-time quantitative polymerase chain reaction (RT-qPCR). Cell proliferation ability was assessed by Cell Counting Kit-8 (CCK8) assay and 5-ethynyl-29-deoxyuridine (EDU) assay. Enzyme-linked immunosorbent assay (ELISA) was conducted to analyze the production of inflammatory cytokines in the supernatant. Western blot assay was performed to analyze protein expression. Dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay were performed to verify the target relationship between miR-135a-5p and CASC2 or tissue inhibitors of metalloproteinase 3 (TIMP3). Results High glucose (HG) treatment reduced the expression of CASC2 in human glomerular mesangial cells (HMCs) in a time-dependent manner. CASC2 overexpression suppressed HG-induced proliferation, inflammation and fibrosis in HMCs. miR-135a-5p was validated as a target of CASC2, and CASC2 restrained HG-induced influences in HMCs partly by down-regulating miR-135a-5p. miR-135a-5p bound to the 3ʹ untranslated region (3ʹUTR) of TIMP3, and CASC2 positively regulated TIMP3 expression by sponging miR-135a-5p in HMCs. miR-135a-5p silencing inhibited HG-induced effects in HMCs partly by up-regulating its target TIMP3. CASC2 overexpression suppressed HG-induced activation of Jun N-terminal Kinase (JNK) signaling partly through mediating miR-135a-5p/TIMP3 signaling. Conclusions In conclusion, CASC2 alleviated proliferation, inflammation and fibrosis in DN cell model by sponging miR-135a-5p to induce TIMP3 expression.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Rongcai Liu ◽  
Weimin Dai ◽  
An Wu ◽  
Yunping Li

Abstract Background Glioblastoma (GBM) is characterized by progressive growth and metastasis. Numerous studies claim that the deregulation of circular RNAs (circRNAs) is associated with cancer progression. However, the role of circRNAs in GBM is largely limited. The purpose of this study was to investigate the functions of circCDC45 in GBM and provide a feasible functional mechanism to support its role. Methods The expression of circCDC45, miR-485-5p and colony-stimulating factor 1 (CSF-1) mRNA was examined using quantitative real-time polymerase chain reaction (qRT-PCR). Cell proliferation was assessed using cell counting kit − 8 (CCK-8) assay and colony formation assay. Cell migration and cell invasion were monitored using transwell assay. The protein levels of proliferation-related markers and CSF-1 were determined using western blot. The target relationship was predicted using bioinformatics tools and validated using dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. Animal models were constructed to verify the role of circCDC45 in vivo. Results The expression of circCDC45 and CSF-1 was elevated in GBM tissues and cells, while the expression of miR-485-5p was declined. Downregulation of circCDC45 or CSF-1 blocked GBM cell proliferation, invasion and migration as well as tumor growth in vivo. In mechanism, circCDC45 positively regulated the expression of CSF-1 by targeting miR-485-5p. Inhibition of miR-485-5p reversed the biological effects caused by circCDC45 downregulation in GBM cells. Conclusion CircCDC45 promoted the progression of GBM by mediating the miR-485-5p/CSF-1 axis, and circCDC45 might be a promising plasmatic biomarker for GBM diagnosis and treatment.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Donghee Kim ◽  
Hyo-Jin Kim ◽  
Seon-Heui Cha ◽  
Hee-Sook Jun

Diabetic nephropathy is one of the most serious complications of diabetes. Lipotoxicity in glomerular mesangial cells is associated with the progression of diabetic nephropathy. Paper mulberry, Broussonetia kazinoki Siebold (BK), has been used in oriental medicine for human health problems. However, to date, the beneficial effect of BK fruit has not been studied. In this study, we investigated the protective effect of an ethanolic extract of BK fruit (BKFE) against palmitate- (PA-) induced toxicity in mesangial cells. BKFE significantly increased the viability of PA-treated SV40 MES13 cells. BKFE significantly inhibited PA-induced apoptosis and decreased the expression of apoptotic genes, cleaved caspase-3, and cleaved PARP. Moreover, BKFE inhibited the expression of endoplasmic reticulum (ER) stress-related genes, such as BiP, phosphorylated eIF2α, cleaved ATF6, and spliced XBP-1, in PA-treated SV40 MES13 cells. BKFE decreased PA-induced ROS production. In addition, BKFE activated the transcription factor Nrf2 and increased the expression of antioxidant enzymes. However, knockdown of Nrf2 using siRNA suppressed this BKFE-induced increase in antioxidant enzyme expression. Furthermore, the protective effect of BKFE on PA-induced apoptosis was significantly reduced by Nrf2 knockdown. In conclusion, BKFE induced the expression of antioxidant enzymes via activation of Nrf2 and protected against PA-induced lipotoxicity in mesangial cells.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Zhuang Geng ◽  
Xiang Wang ◽  
Shiyuan Hao ◽  
Bingzi Dong ◽  
Yajing Huang ◽  
...  

Abstract Background LncRNA NNT-AS1 (NNT-AS1) has been extensively studied as the causative agent in propagation and progression of lung and bladder cancers, and cholangiocarcinoma. However, its significance in proliferation and inflammation of diabetic nephropathy is enigmatic. This study focuses on the molecular mechanisms followed by NNT-AS1 to establish diabetic nephropathy (DN) and its potential miRNA target. Methods Bioinformatics analysis to identify potential miRNA target of NNT-AS1 and smad4 transcription factor was conducted using LncBase and TargetScan, and was subsequently confirmed by luciferase reporter assay. Relative quantitative expression of NNT-AS1 in human glomerular mesangial cells (HGMCs) was detected through quantitative real-time PCR and WB analysis. Cell proliferation was detected through CCK-8 assay, whereas, ELISA was conducted to evaluate the expression of inflammatory cytokines. Following this, relative expression of miR-214-5p and smad4 were confirmed through qRT-PCR and western blot analysis. Results Results from the experiments manifested up-regulated levels of NNT-AS1 and smad4 in the blood samples of DN patients as well as in HGMCs, whereas, downregulated levels of miR-214-5p were measured in the HGMCs suggesting the negative correlation between NNT-AS1 and miR-214-5p. Potential binding sites of NNT-AS1 showed miR-214-5p as its direct target and NNT-AS1 as potential absorber for this microRNA, in turn increasing the expression of transcription factor smad4. Conclusion The data suggests that NNT-AS1 can be positively used as a potential biomarker and indicator of DN and causes extracellular matrix (ECM) accumulation and inflammation of human mesangial cells.


2015 ◽  
Vol 36 (6) ◽  
pp. 2093-2107 ◽  
Author(s):  
Dan Wang ◽  
Mei-Ping Guan ◽  
Zong-Ji Zheng ◽  
Wen-Qi Li ◽  
Fu-Ping Lyv ◽  
...  

Backgroud: Diabetic nephropathy is one of the most frequent causes of end-stage renal disease and is associated with proliferation of glomerular mesangial cells (MCs) and excessive production of the extracellular matrix (ECM). Several studies have shown that early growth response factor 1 (Egr1) plays a key role in renal fibrosis by regulating the expression of genes encoding ECM components. However, whether Egr1 also contributes to diabetic nephropathy is unclear. Methods: In the present study, we compared the expression of Egr1 in kidneys from OLETF rats with spontaneous type 2 diabetes and healthy LETO rats. We also examined whether high glucose and TGF-β1 signaling up-regulated Egr1 expression in cultured MCs, and whether Egr1 expression influenced MC proliferation and expression of ECM genes. Results: We found that higher expression of Egr1 and TGF-β1, at both the mRNA and protein levels, the kidneys from OLETF rats vs. LETO rats. High glucose or TGF-β1 signaling rapidly up-regulated expression of Egr1 mRNA and protein in cultured MCs. Overexpressing Egr1 in MCs by transfection with M61-Egr1 plasmid or treatment with high glucose up-regulated expression of fibronectin, type IV collagen and TGF-β1, and promoted MC proliferation. Conversely, siRNA-mediated silencing of Egr1 expression down-regulated these genes and inhibited MC proliferation. Chromatin immunoprecipitation (ChIP) assays revealed that Egr1 bound to the TGF-β1 promoter. Conclusion: Our results provide strong evidence that Egr1 contributes to diabetic nephropathy by enhancing MC proliferation and ECM production, in part by interacting with TGF-β1.


Sign in / Sign up

Export Citation Format

Share Document