scholarly journals Effects of electrode size and placement on comfort and efficiency during low-intensity neuromuscular electrical stimulation of quadriceps, hamstrings and gluteal muscles

Author(s):  
J. Flodin ◽  
R. Juthberg ◽  
P. W. Ackermann

Abstract Background Neuromuscular electrical stimulation (NMES) may prevent muscle atrophy, accelerate rehabilitation and enhance blood circulation. Yet, one major drawback is that patient compliance is impeded by the discomfort experienced. It is well-known that the size and placement of electrodes affect the comfort and effect during high-intensity NMES. However, during low-intensity NMES the effects of electrode size/placement are mostly unknown. Therefore, the purpose of this study was to investigate how electrode size and pragmatic placement affect comfort and effect of low-intensity NMES in the thigh and gluteal muscles. Methods On 15 healthy participants, NMES-intensity (mA) was increased until visible muscle contraction, applied with three electrode sizes (2 × 2 cm, 5 × 5 cm, 5 × 9 cm), in three different configurations on quadriceps and hamstrings (short-transverse (ST), long-transverse (LT), longitudinal (L)) and two configurations on gluteus maximus (short-longitudinal (SL) and long-longitudinal (LL)). Current–density (mA/cm2) required for contraction was calculated for each electrode size. Comfort was assessed with a numerical rating scale (NRS, 0–10). Significance was set to p < 0.05 and values were expressed as median (inter-quartile range). Results On quadriceps the LT-placement exhibited significantly better comfort and lower current intensity than the ST- and L-placements. On hamstrings the L-placement resulted in the best comfort together with the lowest intensity. On gluteus maximus the LL-placement demonstrated better comfort and required less intensity than SL-placement. On all muscles, the 5 × 5 cm and 5 × 9 cm electrodes were significantly more comfortable and required less current–density for contraction than the 2 × 2 cm electrode. Conclusion During low-intensity NMES-treatment, an optimized electrode size and practical placement on each individual muscle of quadriceps, hamstrings and gluteals is crucial for comfort and intensity needed for muscle contraction.

Author(s):  
Eun Mi Jang ◽  
So Hyun Park

(1) Background—The application of neuromuscular electrical stimulation (NMES) combined with low-intensity exercise to the elderly can be more efficient than low-intensity exercise only in terms of delaying the loss of muscle mass. We aimed to assess the adjunct of NMES to low-intensity lower limb strengthening exercise to prevent falls in frail elderly for a relatively short period of 4 weeks. (2) Methods—Thirty elderly women aged 65 or above were randomly categorized into three groups: control group (CON, n = 8), exercise group (EX, n = 10), and NMES with exercise group (EX + NMES, n = 9). The exercise group took part in a lower limb strengthening exercise program for one hour three times a week for four weeks. Furthermore, the NMES with exercise group had added NMES stimulation when exercising. The limbs’ muscle mass, body fat mass, calf circumference, grip force, five times sit-to-stand test, timed up-and-go test (TUG), one-leg stand test, and Y-balance test (YBT) were evaluated at baseline and 4 weeks after. (3) Results—Comparisons between the three groups showed that the TUG was significantly decreased and the YB was significantly increased in NMES with exercise group (p < 0.05). (4) Conclusions—These results suggested that a combination of NMES stimulation and exercises was more helpful in strengthening balance than exercises alone in the short term.


2020 ◽  
Vol 28 (4) ◽  
pp. 339-350
Author(s):  
Gökhan Umutlu ◽  
Nevzat Demirci ◽  
Nasuh Evrim Acar

BACKGROUND: Neuromuscular electrical stimulation (NMES) is a complementary tool for therapeutic exercise for muscle strengthening and may potentially enhance exercise performance. OBJECTIVE: To determine whether high-intensity interval training (HIIT) and continuous aerobic training (CA) coupled with NMES enhance the changes in the eccentric/concentric muscle contraction patterns of hamstring and quadriceps. METHODS: Forty-five healthy sedentary male participants performed cycling training 3 times per week for 8 weeks combined with/without NMES performed at a load equivalent to 65% and 120% of IVO2max (intensity associated with the achievement of maximal oxygen uptake). Anthropometrics, blood lactate measurements, IVO2max, TLimVO2max (time-to-exhaustion) and isokinetic strength parameters were measured at baseline and post-training using a randomized controlled trial. RESULTS: The conventional hamstring-to-quadriceps-ratio (HQR: Hcon/Qcon) at 60∘/s and the Dynamic Control Ratio (DCR: Hecc/Qcon) at 180∘/s significantly increased both in the dominant (D) and non-dominant (ND) limb in the HIIT + NMES group (p< 0.05). There was a positive significant correlation between the individual changes in D HQR at 60∘/s and IVO2max (r= 0.94, p= 0.005) and the DCR at 180∘/s and TLimVO2max (r= 0.90, p= 0.015), respectively. CONCLUSIONS: The increases in the eccentric muscle contraction and DCR following HIIT + NMES seem to improve fatigue tolerance, cause less fatigue and oxidative stress on the lower limb during pedaling at high intensities.


Author(s):  
Toshiki Kutsuna ◽  
Hitoshi Sugawara ◽  
Hideaki Kurita ◽  
Satomi Kusaka ◽  
Tetsuya Takahashi

Background: Low-intensity resistance training (RT) combined with neuromuscular electrical stimulation (NMES) is one method of exercise to improve the deterioration of physical function. However, it is unclear whether low-intensity RT combined with NMES (RT + NMES) can be safely implemented. Objective: This study aimed to examine the influence of low-intensity RT + NMES on autonomic activity and cardiovascular responses in healthy adults. Methods: This study was an open-label, randomized controlled cross-over trial. The exercise intensity of isometric knee extension RT was set to 40% of the maximum voluntary contraction (peak torque). NMES was adjusted to a biphasic asymmetrical waveform with the frequency maintained at 50 Hz and a phase duration of 300 [Formula: see text]s. The difference in the change in autonomic activity and cardiovascular responses was compared by assessing heart rate variability, blood pressure, and heart rate during RT and [Formula: see text]. Results: Twenty healthy male college students (mean age [Formula: see text] years) participated in this study. The ratio of low- and high-frequency components of heart rate variability, systolic blood pressure, and heart rate increased during exercise in the RT and [Formula: see text] sessions ([Formula: see text]). There were no significant differences in autonomic activity and cardiovascular responses throughout the sessions during RT and [Formula: see text]. Conclusion: In conclusion, our results demonstrated that low-intensity [Formula: see text] was safe and did not induce excessive autonomic and cardiovascular responses in healthy adults.


2011 ◽  
Vol 8 (3-4) ◽  
pp. 345-359 ◽  
Author(s):  
Hilton M. Kaplan ◽  
Lucinda L. Baker ◽  
Salah Rubayi ◽  
Gerald E. Loeb

Objective:BIONs™ (BIOnic Neurons) are injectable, wireless microstimulators that make chronic BION Active Seating (BAS) possible for pressure ulcer prevention (PUP). Neuromuscular electrical stimulation (NMES) produces skeletal motion and activates trophic factors, counteracting three major etiological mechanisms leading to pressure ulcers (PUs): immobility, soft-tissue atrophy, and ischemia. Companion papers I and II reviewed prior experience with NMES for PUP, and analyzed the biomechanical considerations, respectively. This paper presents a treatment strategy derived from this analysis, and the clinical results of the first three cases.Methods:Two BIONs implanted (one on inferior gluteal nerve to gluteus maximus (GM), and other on sciatic nerve to hamstrings (HS)), in 3 spinal cord injured (SCI) subjects already undergoing gluteal rotation flaps for PUs. BAS using HS when seated, and BION Conditioning (BC) via GM+HS when non-weightbearing. Follow-up: 1 yr, including 6 mo. treatment window (interface pressure mapping; muscle perfusion scans; MRI, X-ray volume assessments).Results:Successfully implanted and activated both desired muscle groups, selectively, in all. No PU recurrences or wound complications. Two subjects completed protocol. Mean results: Interface: contact pressure −10%; maximum pressure −20%; peak pressure area −15%. Vascularity: GM +20%, HS +110%. Perfusion: GM +70%, HS +440%. Muscle volume: GM +14%, HS +31%. Buttock soft-tissue padding: +49%. 1 BION failed; 1 BION rotated under GM.Conclusions:Promising proof-of-concept data supporting the feasibility of implanted microstimulators to achieve sufficiently strong and selective activation of target muscles for PUP. Ultimate goal is prophylactic deployment through bilateral, nonsurgical injection of BIONs in chronically immobile patients.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Aline Mizusaki Imoto ◽  
Stella Peccin ◽  
Kelson Nonato Gomes da Silva ◽  
Lucas Emmanuel Pedro de Paiva Teixeira ◽  
Marcelo Ismael Abrahão ◽  
...  

Objectives. To investigate the effect of 8 weeks of NMES + Ex (neuromuscular electrical stimulation combined with exercises) on pain and functional improvement in patients with knee osteoarthritis (OA) compared to exercise (Ex) alone.Design. Randomized controlled trial.Setting. A specialty outpatient clinic.Participants. Patients (N=100; women = 86, men = 14; age range, 50–75 years) with knee OA.Interventions. Participants were randomly assigned to NMES + Ex or Ex group.Outcome Measures. Numerical Rating Scale 0 to 10 (NRS) and the Timed Up and Go (TUG) test were the primary outcomes. The secondary outcomes used were the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC).Results. Following the interventions, a statistically significant improvement in both groups was observed in all outcomes assessed. For the comparison between the groups, no statistically significant difference was found between the NMES + Ex and the Ex groups in NRS (P=0.52), TUG test (P=0.12), and aspects of WOMAC: pain (P=0.26), function (P=0.23), and stiffness (P=0.63).Conclusion. The addition of NMES to exercise did not improve the outcomes assessed in knee OA patients. This study was registered at the Australian Clinical Trials Registry (ACTRN012607000357459).


Author(s):  
Maxwell Harris ◽  
Mitchell McCarty ◽  
Andre Montes ◽  
Ozkan Celik

This paper presents an experimental setup and results on enhancing sensations of a common haptic effect -a virtual wall-induced via neuromuscular electrical stimulation (NMES). A single degree of freedom (DOF) elbow platform with position sensing was constructed. This platform supports the arm in the horizontal plane while elbow flexion and extension torques are generated by stimulation of triceps brachii or the biceps brachii muscles. The response of the system was experimentally characterized by determining the latency, and the relationship between stimulation pulse width, stimulation current, joint position and generated output torques. After system characterization, stimulation control methods to enhance haptic sensations were designed, implemented and pilot tested under a variety of virtual wall hit scenarios. Our results indicate that the wall hit trajectories and interaction were improved by control laws that initiated low intensity stimulation prior to the wall hit and utilized co-contraction for damping. The “priming” of the muscle with low intensity stimulation prior to the main stimulation improved the responsiveness of muscle contractions.


Sign in / Sign up

Export Citation Format

Share Document