scholarly journals Epitranscriptomic profile of Lactobacillus agilis and its adaptation to growth on inulin

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Hongzhou Wang ◽  
Jennifer H. Simpson ◽  
Madison E. Kotra ◽  
Yuanting Zhu ◽  
Saumya Wickramasinghe ◽  
...  

Abstract Objective Ribonucleic acids (RNA) are involved in many cellular functions. In general, RNA is made up by only four different ribonucleotides. The modifications of RNA (epitranscriptome) can greatly enhance the structural diversity of RNA, which in turn support some of the RNA functions. To determine whether the epitranscriptome of a specific probiotic is associated with its adaptation to the source of energy, Lactobacillus agilis (YZ050) was selected as a model and its epitranscriptome was profiled and compared by using mass spectrometry. Results The L. agilis epitranscriptome (minus rRNA modifications) consists of 17 different RNA modifications. By capturing the L. agilis cells during exponential growth, reproducible profiling was achieved. In a comparative study, the standard source of energy (glucose) in the medium was substituted by a prebiotic inulin, and a downward trend in the L. agilis epitranscriptome was detected. This marks the first report on a system-wide variation of a bacterial epitranscriptome that resulted from adapting to an alternative energy source. No correlation was found between the down-regulated RNA modifications and the expression level of corresponding writer genes. Whereas, the expression level of a specific exonuclease gene, RNase J1, was detected to be higher in cells grown on inulin.

2018 ◽  
Vol 4 (1) ◽  
pp. 27-30 ◽  
Author(s):  
Olena Savchenko ◽  
◽  
Vasyl Zhelykh ◽  
Yurii Yurkevych ◽  
Khrystyna Kozak ◽  
...  

2020 ◽  
Vol 3 (3) ◽  
pp. 26-29
Author(s):  
Kateryna Viktorivna Miroshnyk ◽  
Oleh Mykolaiovych Bevza

2021 ◽  
Vol 2 (4) ◽  
Author(s):  
Moojin Kim

Energy harvesting through motion caused by wind is a unique way of finding an alternative energy source for several electronic devices. Piezo-electronic sensors, which harvest energy from small vibrations and movements, are investigated by many researchers nowadays. This paper conducted an experimental study to find an alternative energy source for diverse electronics with forced oscillations from a fan. The relations between the force applied by wind and the oscillation of a paper strip were studied.


Author(s):  
M. Kavitha ◽  
V. Elanangai ◽  
S. Jayaprakash ◽  
V. Balasubramanian

Due to the increasing concern for environment protection and the uncertainty about oil reserves, nowadays electricity is playing a key role as an alternative energy source in the automotive sector. In this paper, non isolated bidirectional converter is used for electric vehicle application during regenerative braking process. During motoring operation, the converter supplies energy to motor through battery. In regenerative braking action, the converter supplies the available back emf to charge the battery. The recycled energy is effectively stored in the battery. The simulation is carried out in MATLAB/Simulink. The worthiness of simulation is illustrated experimentally by developing a prototype. The simulation and experimental results are presented in this paper<strong>.</strong>


Sign in / Sign up

Export Citation Format

Share Document