scholarly journals Ratio between Lactobacillus plantarum and Acetobacter pomorum on the surface of Drosophila melanogaster adult flies depends on cuticle melanisation

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Vladislav Mokeev ◽  
Justin Flaven-Pouchon ◽  
Yiwen Wang ◽  
Nicole Gehring ◽  
Bernard Moussian

Abstract Objectives As in most organisms, the surface of the fruit fly Drosophila melanogaster is associated with bacteria. To examine whether this association depends on cuticle quality, we isolated and quantified surface bacteria in normal and melanized flies applying a new and simple protocol. Results On wild flies maintained in the laboratory, we identified two persistently culturable species as Lactobacillus plantarum and Acetobacter pomorum by 16S rDNA sequencing. For quantification, we showered single flies for DNA extraction avoiding the rectum to prevent contamination from the gut. In quantitative PCR analyses, we determined the relative abundance of these two species in surface wash samples. On average, we found 17-times more A. pomorum than L. plantarum. To tentatively study the importance of the cuticle for the interaction of the surface with these bacteria, applying Crispr/Cas9 gene editing in the initial wild flies, we generated flies mutant for the ebony gene needed for cuticle melanisation and determined the L. plantarum to A. pomorum ratio on these flies. We found that the ratio between the two bacterial species reversed on ebony flies. We hypothesize that the cuticle chemistry is crucial for surface bacteria composition. This finding may inspire future studies on cuticle-microbiome interactions.

2021 ◽  
Author(s):  
Vladislav Mokeev ◽  
Yiwen Wang ◽  
Nicole Gehring ◽  
Bernard Moussian

Abstract Objectives As in most organisms, the surface of the fruit fly Drosophila melanogaster is associated with bacteria. In order to study the genetic parameters of this association, we developed a simple protocol for surface bacteria isolation and quantification. Results On wild-type flies maintained in the laboratory, we identified two persistently culturable species as Lactobacillus plantarum and Acetobacter pomorum by 16S rDNA sequencing. For quantification, we showered single flies for DNA extraction avoiding the rectum to prevent contamination from the gut. Using specific primers for quantitative PCR analyses, we determined the relative abundance of these two species in surface wash samples. Repeatedly, we found 20% more L. plantarum than A. pomorum . To tentatively study the importance of the cuticle for the interaction of the surface with these bacteria, applying Crispr/Cas9 gene editing in the initial wild-type flies, we generated flies mutant for the ebony gene needed for cuticle melanisation and determined the L. plantarum to A. pomorum ratio on these flies. We found that the relative abundance of L. plantarum increased substantially on ebony flies. We conclude that the cuticle chemistry is crucial for surface bacteria composition. This finding may inspire future studies on cuticle-microbiome interactions.


2013 ◽  
Vol 79 (22) ◽  
pp. 6984-6988 ◽  
Author(s):  
Christine Fink ◽  
Fabian Staubach ◽  
Sven Kuenzel ◽  
John F. Baines ◽  
Thomas Roeder

ABSTRACTThe diversity and structure of the intestinal microbial community has a strong influence on life history. To understand how hosts and microbes interact, model organisms with comparatively simple microbial communities, such as the fruit fly (Drosophila melanogaster), offer key advantages. However, studies of theDrosophilamicrobiome are limited to a single point in time, because flies are typically sacrificed for DNA extraction. In order to test whether noninvasive approaches, such as sampling of fly feces, could be a means to assess fly-associated communities over time on the same cohort of flies, we compared the microbial communities of fly feces, dissected fly intestines, and whole flies across three differentDrosophilastrains. Bacterial species identified in either whole flies or isolated intestines were reproducibly found in feces samples. Although the bacterial communities of feces and intestinal samples were not identical, they shared similarities and obviously the same origin. In contrast to material from whole flies and intestines, feces samples were not compromised byWolbachiaspp. infections, which are widespread in laboratory and wild strains. In a proof-of-principle experiment, we showed that simple nutritional interventions, such as a high-fat diet or short-term starvation, had drastic and long-lasting effects on the micobiome. Thus, the analysis of feces can supplement the toolbox for microbiome studies inDrosophila, unleashing the full potential of such studies in time course experiments where multiple samples from single populations are obtained during aging, development, or experimental manipulations.


2020 ◽  
Vol 16 ◽  
Author(s):  
Nidhi Srivastava ◽  
Indira P. Sarethy

Aims: Characterization of antimicrobial metabolites of novel Streptomyces sp. UK-238. Background: Novel antimicrobial drug discovery is urgently needed due to emerging multi antimicrobial drug resistance among pathogens. Since many years, natural products have provided the basic skeletons for many therapeutic compounds including antibiotics. Bioprospection of un/under explored habitats and focussing on selective isolation of actinobacteria as major reservoir of bio and chemodiversity has yielded good results. Objective: The main objectives of the study were the identification of UK-238 by 16S rDNA sequencing and antimicrobial metabolite fingerprinting of culture extracts. Method: In the present study, a promising isolate, UK-238, has been screened for antimicrobial activity and metabolite fingerprinting from the Himalayan Thano Reserve forest. It was identified by 16S rDNA sequencing. Ethyl acetate extract was partially purified by column chromatography. The pooled active fractions were fingerprinted by GC-MS and compounds were tentatively identified by collated data analysis based on Similarity Index, observed Retention Index from Databases and calculated Retention Index. Results: UK-238 was identified as Streptomyces sp. with 98.4% similarity to S. niveiscabiei. It exhibited broad-spectrum antibacterial and antifungal activity. GC-MS analysis of active fractions of ethyl acetate extract showed the presence of eighteen novel antimicrobial compounds belonging to four major categories- alcohols, alkaloid, esters and peptide. Conclusion: The study confirms that bioprospection of underexplored habitats can elaborate novel bio and chemodiversity.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Rachel Paul ◽  
Guillaume Giraud ◽  
Katrin Domsch ◽  
Marilyne Duffraisse ◽  
Frédéric Marmigère ◽  
...  

AbstractFlying insects have invaded all the aerial space on Earth and this astonishing radiation could not have been possible without a remarkable morphological diversification of their flight appendages. Here, we show that characteristic spatial expression profiles and levels of the Hox genes Antennapedia (Antp) and Ultrabithorax (Ubx) underlie the formation of two different flight organs in the fruit fly Drosophila melanogaster. We further demonstrate that flight appendage morphology is dependent on specific Hox doses. Interestingly, we find that wing morphology from evolutionary distant four-winged insect species is also associated with a differential expression of Antp and Ubx. We propose that variation in the spatial expression profile and dosage of Hox proteins is a major determinant of flight appendage diversification in Drosophila and possibly in other insect species during evolution.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Xiaochan Xu ◽  
Wei Yang ◽  
Binghui Tian ◽  
Xiuwen Sui ◽  
Weilai Chi ◽  
...  

AbstractThe fruit fly, Drosophila melanogaster, has been used as a model organism for the molecular and genetic dissection of sleeping behaviors. However, most previous studies were based on qualitative or semi-quantitative characterizations. Here we quantified sleep in flies. We set up an assay to continuously track the activity of flies using infrared camera, which monitored the movement of tens of flies simultaneously with high spatial and temporal resolution. We obtained accurate statistics regarding the rest and sleep patterns of single flies. Analysis of our data has revealed a general pattern of rest and sleep: the rest statistics obeyed a power law distribution and the sleep statistics obeyed an exponential distribution. Thus, a resting fly would start to move again with a probability that decreased with the time it has rested, whereas a sleeping fly would wake up with a probability independent of how long it had slept. Resting transits to sleeping at time scales of minutes. Our method allows quantitative investigations of resting and sleeping behaviors and our results provide insights for mechanisms of falling into and waking up from sleep.


1999 ◽  
Vol 19 (2) ◽  
pp. 1159-1170 ◽  
Author(s):  
Madeline A. Crosby ◽  
Chaya Miller ◽  
, Tamar Alon ◽  
Kellie L. Watson ◽  
C. Peter Verrijzer ◽  
...  

ABSTRACT The genes of the trithorax group (trxG) inDrosophila melanogaster are required to maintain the pattern of homeotic gene expression that is established early in embryogenesis by the transient expression of the segmentation genes. The precise role of each of the diverse trxG members and the functional relationships among them are not well understood. Here, we report on the isolation of the trxG gene moira(mor) and its molecular characterization. morencodes a fruit fly homolog of the human and yeast chromatin-remodeling factors BAF170, BAF155, and SWI3. mor is widely expressed throughout development, and its 170-kDa protein product is present in many embryonic tissues. In vitro, MOR can bind to itself and it interacts with Brahma (BRM), an SWI2-SNF2 homolog, with which it is associated in embryonic nuclear extracts. The leucine zipper motif of MOR is likely to participate in self-oligomerization; the equally conserved SANT domain, for which no function is known, may be required for optimal binding to BRM. MOR thus joins BRM and Snf5-related 1 (SNR1), two known Drosophila SWI-SNF subunits that act as positive regulators of the homeotic genes. These observations provide a molecular explanation for the phenotypic and genetic relationships among several of the trxG genes by suggesting that they encode evolutionarily conserved components of a chromatin-remodeling complex.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 407-407
Author(s):  
Ki Beom Jang ◽  
Sung Woo Kim

Abstract This study aimed to evaluate supplemental effects of milk carbohydrates in whey permeate on jejunal mucosa-associated microbiota in nursery pigs during 7 to 11 kg BW. A total of 720 pigs at 7.5 kg BW were allotted to 6 treatments (6 pens/treatment and 20 pigs/pen). Treatments were 6 levels of whey permeate supplementation (0, 3.75, 7.50, 11.25, 15.00, and 18.75%) and fed to pigs for 11 d. On d 11, 36 pigs representing median BW of each pen were euthanized to collect the jejunal mucosa to evaluate microbiota in the jejunum by 16S rDNA sequencing. Data were analyzed using contrasts in MIXED procedure of SAS. Whey permeate contained 76.3% lactose and 0.4% milk oligosaccharides. Increasing whey permeate supplementation from 0 to 18.75% did not affect the alpha-diversity estimates of microbiota. Whey permeate supplementation tended to decrease (P = 0.073, 1.59 to 1.22) Firmicutes:Bacteroidetes compared with no addition of whey permeate. Increasing whey permeate supplementation tended to linearly increase Bifidobacteriaceae (P = 0.089, 0.73 to 1.11), decrease Enterobacteriaceae (P = 0.091, 1.04 to 0.52), decrease Stretococcaceae (P = 0.094, 1.50 to 0.71), and caused quadratic changes (P < 0.05) on Lactobacillaceae (maximum: 9.14% at 12.91% whey permeate). Increasing whey permeate supplementation caused a quadratic change (P < 0.05) on Lactobacillus_Salivarius (maximum: 0.92% at 7.35% whey permeate) and tended to cause quadratic changes on Lactobacillus_Rogosae (P = 0.083; maximum: 0.53% at 8.45% whey permeate) and Lactobacillus_Mucosae (P = 0.092; maximum: 0.70% at 6.98% whey permeate). In conclusion, supplementation of whey permeate as sources of lactose and milk oligosaccharides at a range from 7 to 13% seems to be beneficial to nursery pigs by increasing the abundance of lactic acid-producing bacteria in the jejunal mucosa.


2021 ◽  
Author(s):  
Jane Hawkey ◽  
Hugh Cottingham ◽  
Alex Tokolyi ◽  
Ryan R Wick ◽  
Louise M Judd ◽  
...  

Linear plasmids are extrachromosomal DNA that have been found in a small number of bacterial species. To date, the only linear plasmids described in the Enterobacteriaceae family belong to Salmonella, first found in Salmonella Typhi. Here, we describe a collection of 12 isolates of the Klebsiella pneumoniae species complex in which we identified linear plasmids. We used this collection to search public sequence databases and discovered an additional 74 linear plasmid sequences in a variety of Enterobacteriaceae species. Gene content analysis divided these plasmids into five distinct phylogroups, with very few genes shared across more than two phylogroups. The majority of linear plasmid-encoded genes are of unknown function, however each phylogroup carried its own unique toxin-antitoxin system and genes with homology to those encoding the ParAB plasmid stability system. Passage in vitro of the 12 linear plasmid-carrying Klebsiella isolates in our collection (which include representatives of all five phylogroups) indicated that these linear plasmids can be stably maintained, and our data suggest they can transmit between K. pneumoniae strains (including members of globally disseminated multidrug resistant clones) and also between diverse Enterobacteriaceae species. The linear plasmid sequences, and representative isolates harbouring them, are made available as a resource to facilitate future studies on the evolution and function of these novel plasmids.


Sign in / Sign up

Export Citation Format

Share Document