scholarly journals The frequencies of peripheral blood CD5+CD19+ B cells, CD3−CD16+CD56+ NK, and CD3+CD56+ NKT cells and serum interleukin-10 in patients with multiple sclerosis and neuromyelitis optica spectrum disorder

2022 ◽  
Vol 18 (1) ◽  
Author(s):  
Leila Khani ◽  
Mir Hadi Jazayeri ◽  
Reza Nedaeinia ◽  
Mahmood Bozorgmehr ◽  
Seyed Masood Nabavi ◽  
...  

Abstract Background Multiple sclerosis (MS) and neuromyelitis optica syndrome disease (NMOSD) are inflammatory diseases of the central nervous system. The pathogenesis and treatments for these two conditions are very different. Natural killer (NK) and natural killer T (NKT) cells are immune cells with an important role in shaping the immune response. B cells are involved in antigen presentation as well as antibody and cytokine production. There is conflicting evidence of the roles of NK, NKT, and B cells in the two conditions. We aimed to compare the frequency of CD3−CD16+CD56+NK, CD3+ CD56+ NKT, and CD5+CD19+ B cells in the peripheral blood and serum Interleukin-10 (IL-10) in patients with MS and NMOSD. Methods CD19+CD5+ B, CD3− CD16+CD56+ NK, and CD3+CD56+ NKT cells were quantitated by flow cytometry in 15 individuals with Interferon-Beta (IFN-β) treated relapsing–remitting MS (RRMS), 15 untreated RRMS, and 15 NMOSD patients as well as 30 healthy controls (HC). Serum IL-10 was measured using an enzyme-linked immunosorbent assay (ELISA). Results The percentage of CD3−CD56+CD16+ NK cells in the peripheral blood of IFN-treated MS (1.81 ± 0.87) was significantly lower than for untreated RRMS (4.74 ± 1.80), NMOSD (4.64 ± 1.26) and HC (5.83 ± 2.19) (p < 0.0001). There were also differences for the percentage of CD3−CD16+ and CD3−CD56+ cells (p < 0.001 and p < 0.0007; respectively). IFN-treated RRMS (2.89 ± 1.51) had the lowest proportion of CD3+CD56+ among the study groups (p < 0.002). Untreated RRMS (5.56 ± 3.04) and NMOSD (5.47 ± 1.24) had higher levels of CD3+CD56+ than the HC (3.16 ± 1.98). The mean percentage of CD19+CD5+ B cells in the peripheral blood of untreated RRMS patients (1.32 ± 0.67) was higher compared to the patients with NMOSD (0.30 ± 0.20), HC (0.5 ± 0.22) and IFN-treated RRMS (0.81 ± 0.17) (p < 0.0001). Serum interleukin-10 was significantly higher in the IFN-treated RRMS (8.06 ± 5.39) and in HC (8.38 ± 2.84) compared to untreated RRMS (5.07 ± 1.44) and the patients with NMOSD (5.33 ± 2.56) (p < 0.003). Conclusions The lower proportion of CD3−CD56+ CD16+ NK and CD3+CD56+ cells in peripheral blood of IFN-treated RRMS compared to other groups suggests the importance of immunomodulation in patients with RRMS disorder. Based on the differences in CD19+CD5+ B cells and serum IL-10 between patients and HC, supplementary assessments could be of value in clarifying their roles in autoimmunity.

2012 ◽  
Vol 19 (7) ◽  
pp. 926-931 ◽  
Author(s):  
Honghao Wang ◽  
Kai Wang ◽  
Conghui Wang ◽  
Xiaonan Zhong ◽  
Wei Qiu ◽  
...  

Background: Multiple sclerosis (MS) and neuromyelitis optica (NMO) are immune-mediated inflammatory diseases of the central nervous system. In the acute phase of these diseases, secondary ischemia due to inflammation-induced endothelial dysfunction may be an important pathological change. Pentraxin 3 (PTX3) is a pro-inflammatory protein and a novel biomarker of inflammatory vascular diseases. Objective: We aimed to determine whether PTX3 levels are elevated in MS and NMO patients. Methods: The concentrations of plasma PTX3 were measured using an enzyme-linked immunosorbent assay in 22 MS patients, 26 NMO patients, 15 acute cerebral infarction (CI) patients, 11 mild headache patients, and 14 volunteer controls. Results: During relapse, plasma PTX3 levels were higher in MS patients than in headache patients ( p=0.003) and controls ( p<0.001). Plasma PTX3 levels were also increased in NMO patients compared with CI patients ( p=0.011), headache patients ( p<0.001) and controls ( p<0.001). CI patients showed elevated PTX3 levels compared with controls ( p=0.008). MS and NMO patients showed a trend toward an increased disease disability with higher plasma PTX3 during relapse (MS: p=0.005; NMO: p<0.001). Plasma PTX3 levels were remarkably lower in remission than in the relapse stage (MS: p<0.001; NMO: p<0.001). Conclusion: Plasma PTX3 level is associated with inflammatory responses in MS and NMO.


2012 ◽  
Vol 19 (3) ◽  
pp. 289-298 ◽  
Author(s):  
Chao Quan ◽  
Hai Yu ◽  
Jian Qiao ◽  
Baoguo Xiao ◽  
Guixian Zhao ◽  
...  

Background: The effective treatment of neuromyelitis optica (NMO) with rituximab has suggested an important role for B cells in NMO pathogenesis. Objective: To explore the antibody-independent function of B cells in NMO and relapsing–remitting multiple sclerosis (RRMS). Methods: Fifty-one NMO patients and 42 RRMS patients in an acute relapse phase and 37 healthy controls (HC) were enrolled in the study. The B cell expression of B cell activating factor receptor (BAFF-R), CXCR5 and very late antigen-4 (VLA-4), the B cell production of interleukin (IL)-10 and interferon (IFN)-γ and the proportion of circulating memory and CD19+CD24highCD38high regulatory B cells were evaluated by flow cytometry. The cerebrospinal fluid (CSF) levels of BAFF and CXCL13 were determined by enzyme-linked immunosorbent assay (ELISA). Results: The CD19+CD24highCD38high regulatory B cell levels and the B cell expression of IL-10 were significantly lower in NMO patients than in RRMS patients and the HC. In aquaporin-4 antibody (AQP4-ab)-positive NMO patients, the B cell IL-10 production and CD19+CD24highCD38high regulatory B cell levels were even lower than in AQP4-ab-negative NMO patients. The CSF BAFF and CXCL13 levels were significantly higher in NMO patients than in patients with RRMS and other non-inflammatory neurologic diseases (ONDs). Conclusions: The immuno-regulatory properties of B cells are significantly impaired in NMO patients and particularly in AQP4-ab-positive NMO patients. The elevated CSF levels of BAFF and CXCL13 in NMO suggest an enhanced intrathecal B cell recruitment and activation. Our results further define the distinct immunological nature of NMO and RRMS from the B cell perspective.


Diagnostics ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1871
Author(s):  
Christoph Ruschil ◽  
Constanze Louisa Kemmerer ◽  
Lena Beller ◽  
Gisela Gabernet ◽  
Markus Christian Kowarik

During the last few decades, the role of B cells has been well established and redefined in neuro-inflammatory diseases, including multiple sclerosis and autoantibody-associated diseases. In particular, B cell maturation and trafficking across the blood–brain barrier (BBB) has recently been deciphered with the development of next-generation sequencing (NGS) approaches, which allow the assessment of representative cerebrospinal fluid (CSF) and peripheral blood B cell repertoires. In this review, we perform literature research focusing on NGS studies that allow further insights into B cell pathophysiology during neuro-inflammation. Besides the analysis of CSF B cells, the paralleled assessment of peripheral blood B cell repertoire provides deep insights into not only the CSF compartment, but also in B cell trafficking patterns across the BBB. In multiple sclerosis, CSF-specific B cell maturation, in combination with a bidirectional exchange of B cells across the BBB, is consistently detectable. These data suggest that B cells most likely encounter antigen(s) within the CSF and migrate across the BBB, with further maturation also taking place in the periphery. Autoantibody-mediated diseases, such as neuromyelitis optica spectrum disorder and LGI1 / NMDAR encephalitis, also show features of a CSF-specific B cell maturation and clonal connectivity with peripheral blood. In conclusion, these data suggest an intense exchange of B cells across the BBB, possibly feeding autoimmune circuits. Further developments in sequencing technologies will help to dissect the exact pathophysiologic mechanisms of B cells during neuro-inflammation.


2018 ◽  
Vol 46 (9) ◽  
pp. 3970-3978 ◽  
Author(s):  
Shujun Guo ◽  
Qingqing Chen ◽  
Xiaoli Liang ◽  
Mimi Mu ◽  
Jing He ◽  
...  

Objective To investigate levels of regulatory B (Breg) cells, plasma cells, and memory B cells in the peripheral blood, and interleukin (IL)-10 in the serum of multiple sclerosis (MS) patients, and to determine the correlation between Breg cell levels and the Expanded Disability Status Scale (EDSS) score. Methods Levels of Breg cells, plasma cells, and memory B cells in the peripheral blood of 12 MS patients were measured using flow cytometry. IL-10 serum levels were measured by enzyme-linked immunosorbent assay. The correlation between Breg cell levels and MS EDSS score was measured using Pearson’s correlation coefficient. Results Compared with healthy controls, MS patients had decreased levels of CD19+CD24hiCD38hi Breg cells in their peripheral blood and reduced serum levels of IL-10; however, the ratios of CD19+CD27hiCD38hi plasma cells and CD19+CD27+CD24hi memory B cells to total B cells did not differ significantly between healthy controls and MS patients. CD19+CD24hiCD38hi Breg cell levels in the peripheral blood of MS patients were not significantly correlated with MS EDSS score. Conclusion Peripheral blood CD19+CD24hiCD38hi Breg cell levels and serum IL-10 levels were reduced in MS patients compared with controls, but Breg cell levels were not correlated with MS EDSS score.


BMC Neurology ◽  
2010 ◽  
Vol 10 (1) ◽  
Author(s):  
Akiyuki Uzawa ◽  
Masahiro Mori ◽  
Sei Hayakawa ◽  
Saeko Masuda ◽  
Fumio Nomura ◽  
...  

1996 ◽  
Vol 41 (12) ◽  
pp. 2493-2498 ◽  
Author(s):  
Bruce Yacyshyn ◽  
Jon Meddings ◽  
Daniel Sadowski ◽  
Mary Beth Bowen-Yacyshyn

Blood ◽  
1993 ◽  
Vol 82 (11) ◽  
pp. 3430-3436 ◽  
Author(s):  
MH van Oers ◽  
ST Pals ◽  
LM Evers ◽  
CE van der Schoot ◽  
G Koopman ◽  
...  

Abstract CD27, a transmembrane disulfide-linked 55-kD homodimer, belongs to the nerve growth factor-receptor family, a group of homologous molecules involved in lymphocyte differentiation and selection. It is expressed on mature thymocytes, peripheral blood T cells, and a subpopulation of B cells. We investigated the expression of CD27 on malignant B cells representative for a broad range of stages in physiologic antigen- independent and -dependent B-cell development. In normal lymphoid tissue CD27+ B cells were only found in the peripheral blood (29.8% +/- 10.8%, n = 13) and in germinal centers. With the exception of pro-B and the majority of pre-pre-B acute lymphocytic leukemias and of myelomas, CD27 expression of variable intensity was detected on almost all immature and mature malignant B cells tested. Moreover, using a sandwich enzyme-linked immunosorbent assay we could show the presence of sometimes very high (up to 6,000 U/mL; normal values < 190 U/mL) amounts of the soluble 28- to 32-kD form of CD27 (sCD27) in the sera of patients with B-cell malignancies. The highest levels of sCD27 were observed in patients with chronic lymphocytic leukemia and low-grade non-Hodgkin's lymphomas. Most importantly, both in transversal and longitudinal studies, we found a strong correlation between sCD27 levels in the serum and tumor load, indicating that sCD27 can be used as a disease-marker in patients with acute and chronic B-cell malignancies.


Sign in / Sign up

Export Citation Format

Share Document